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Summary of the research 

 

 Much research has focused on the evaluation of real options in the context of energy 

investment projects, it is mainly in this sector that the uncertainties are the largest in estimating 

the costs and benefits generated by an investment.  

 The real options approach makes possible to take all these uncertainties into account and 

therefore the assessment of the case of solar panels in Belgium is very relevant in this respect. 

These have been the subject of numerous legislative changes both as regards the granting of 

aid or subsidies than the various related taxes. These changes have created many uncertainties 

for potential investors who at times have generated installation races. 

 The different real option valuation models used (analytical solutions and simulations using 

a Least-Square Monte-Carlo method) converge towards a solution whose value is positive and 

means an optimal choice by waiting indefinitely. Comparing with the return of a stock exchange 

investment, solar panel could produce higher profitability with lower risks. An estimation of the 

return gives a result about 11% in Walloon region, 12% in Flemish region and 28%/year in 

Brussels region. With this level of profits, invest now is a good alternative as it provides a 

protection against the growing electricity price in the country (which is interesting for low-incomes 

people) and legislative changes. Other advantages come from the responsible investment 

behavior as it helps to contribute to the energy transition towards a more ecological and 

sustainable world and provide stable cash-flows along the installation life. 

 

Keyword: Solar panel; Real Option Value; Investment; Energy; Least-Square Monte Carlo 
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Résumé de la recherche 

 

 De nombreuses recherches se sont concentrées sur l’évaluation d’options réelles dans le 

cadre de projet d’investissement en matière énergétique, c’est principalement dans ce secteur 

que les incertitudes sont les plus grandes quant à l’estimation des coûts et bénéfices générés par 

un investissement.  

 L’approche par les options réelles permet justement de prendre toutes ces incertitudes 

en compte et c’est pourquoi l’évaluation du cas des panneaux solaires en Belgique est dans ce 

sens très intéressant. Ceux-ci ont fait l’objet de nombreux changements législatifs tant en ce qui 

concerne les octrois d’aides ou de subsides que les différentes taxes y afférentes. Ces 

modifications ont entrainé de nombreuses incertitudes pour les potentiels investisseurs générant 

par moment des courses à l’installation. 

 Les différents modèles d’évaluation d’options réelles utilisés (solutions analytiques et 

simulations via une méthode de Least-Square Monte-Carlo) convergent vers une solution dont la 

valeur est positive et signifie qu’un choix optimal serait d’attendre indéfiniment. Comparé au 

rendement d'un investissement boursier, un panneau solaire pourrait générer une plus grande 

rentabilité avec moins de risques. Une estimation du rendement donne une rentabilité d'environ 

11% en région wallonne, 12% en région flamande et 28%/an en région bruxelloise. Avec ce 

niveau de profits, investir maintenant est une bonne alternative car cela offre également une 

protection contre la hausse du prix de l'électricité dans le pays (ce qui est intéressant pour les 

personnes à faibles revenus) et d’éventuelles modifications législatives. D'autres avantages 

peuvent provenir du comportement responsable de cet investissement car il contribue à la 

transition énergétique vers un monde plus écologique et plus durable et fournit en même temps 

des flux de trésorerie stables tout au long de la vie de l'installation. 

 

Mots clés: Panneaux solaires; Option réelle; Investissement; Energie; Least-Square Monte Carlo 
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Samenvatting van het onderzoek 

 

 Veel onderzoek heeft zich gericht op de evaluatie van de reële opties in het kader van 

energie-investeringsprojecten, het is vooral in deze sector dat de onzekerheden het grootst zijn 

als het gaat om het schatten van de kosten en baten van een investering.  

 De reële optiebenadering maakt het mogelijk om rekening te houden met al deze 

onzekerheden en daarom is de beoordeling van het geval van de zonnepanelen in België in dit 

opzicht zeer relevant. Deze zijn het voorwerp geweest van talrijke wetswijzigingen, zowel wat 

de toekenning van steun of subsidies betreft als de verschillende belastingen die daarmee 

verband houden. Deze wijzigingen hebben veel onzekerheden gecreëerd voor potentiële 

investeerders, die soms tot installatiewedstrijden hebben geleid. 

 De verschillende gebruikte reële optiewaarderingsmodellen (analytische oplossingen en 

simulaties met behulp van een Least-Square Monte-Carlo methode) convergeren naar een 

oplossing waarvan de waarde positief is en die een optimale keuze betekent door eindeloos te 

wachten. In vergelijking met het rendement van een beursinvestering kan een zonnepaneel een 

hogere rentabiliteit met lagere risico's opleveren. Een schatting van het rendement geeft een 

resultaat van ongeveer 11% in het Waalse Gewest, 12% in het Vlaamse Gewest en 28%/jaar 

in het Brusselse Gewest. Met dit winstniveau is investeren nu een goed alternatief omdat het een 

bescherming biedt tegen de stijgende elektriciteitsprijs in het land (wat interessant is voor mensen 

met een laag inkomen) en tegen veranderingen in de wetgeving. Andere voordelen vloeien 

voort uit het investeringsgedrag, aangezien het bijdraagt tot de energietransitie naar een meer 

ecologische en duurzame wereld en zorgt voor een stabiele cashflow tijdens de levensduur van 

de installatie. 

 

Trefwoorden: Zonnepanelen; Reële optie; Investeringen; Energie; Least-Square Monte Carlo 
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I. Introduction 

 

 Every day, people need to make choices and for some decisions it can involve a huge 

amount of money, it’s the case with the investment decisions. This research will be focused on an 

investment decision in renewable energy and more specifically in a solar panel installation in 

Belgium. With the context of climate change, this kind of behavior becomes more and more 

important for our societies.  

 The question is not “Do we need to invest?” but “When do we need to invest?” 

 It can be very difficult to answer to this query because energy investments are subject to 

a high uncertainty about the probable costs and benefits, which involved a higher risk and a 

higher return to compensate this risk-taking position accordingly to the CAPM theory. 

 Decisions are generally based on multiple models which give an indication on the 

profitability of the project, it’s the case for the Net Present Value (NPV) or the Internal Rate of 

Return (IRR) method but their major weakness is that they don’t incorporate the role of the 

uncertainty and flexibility involved on every decision process. With those techniques, investors 

would require an expected return of 25% or a pay-back time of 4 years or less, which is high 

in comparison with a stock exchange investment. 

 It’s why the theory of real option could help; this technique incorporates those missing 

variables in the valuation of the investment decisions and contributes to reduce the expected 

return by a decrease of the underlying risk through a financial option. An application example 

of this method could be to wait 1 year before investing and avoiding the risk of a legislation 

change due to an election. 

 Multiple researches have been made on the subject to value investment decisions in 

copper mining, nuclear energy or hydraulic energy. Photovoltaic is on its side subject to a smaller 

literature with a focus on the Asian context. The results tend to show a significant importance of 

the electricity price and government subsidy regime. The Belgian case is in this sense a perfect 

test to value this kind of option due to the high electricity price and variations of the government 

subsidies. 

 The document will be divided into 2 major parts: 

• A theorical part that introduces the main techniques to value investment as NPV, 

approach of real option and mathematical tools (Brownian motions) to value such 

financial products 

• A practical part that describes the Belgian context of solar panel, a literature review 

of similar projects and 3 different models to value the real option. 

The results will give a value for the option allowing to determine the best time to invest 

considering all the underlying risk involved on a such project. 
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II. How to value a decision to invest 

 

1. Main methods 
 

Multiple decision tools are used to value the opportunity of an investment project, the 

most principal will be presented here on a non-exhaustive basis. Most of the formulas come 

from the reference book of Myers [1] on corporate finance theory.  

a) Net Present Value (NPV) 
 

The first method, and the most famous, to value an investment project is the net present 

value (NPV). This technique requires the expected cash-flow generated by the project, 

generally represented by an investment cost at the first period and a regular income 

produced by the exploitation along the life of the project. They are actualized with an 

interest rate which depends of the perspective and the profile of the investor. Corporate 

financial theory advices to use a rate that reflects the equity cost of the investor which relies 

most of the time on the CAPM model. Those flows are actualized at a power corresponding 

to their distance in time from the actual situation, then all the numbers of the previous 

operation are summed. This result gives a value that can be positive or negative. If it’s 

positive, the investor will invest in the project. If not, the investor should keep his money and 

save it.  

 

𝑁𝑃𝑉 (𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑡𝑖𝑚𝑒) =  ∑
𝑅𝑡

(1 + 𝑖)𝑡

𝑛

𝑡=𝑜

             

𝑁𝑃𝑉 (𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑡𝑖𝑚𝑒) =  ∑𝑅𝑡 ∗ 𝑒𝑖∗𝑡

𝑛

𝑡=𝑜

 

 
Reference: Myers, page 101 

(1) 

Figure 1 - Investment decision 

An economic agent has the choice between to invest in a risky investment project or save the money at a free risk rate 
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A practical example will now be introduced with standard variables, it will be used 

through the theorical part to understand all the different concepts developed here and their 

implications on the profitability of an investment project. 

 

Example 1: Basic situation 

A business executive wants to invest in a machine to increase the production of the 

firm. Suppose that the factory produces only one product, a car based on a diesel 

motorization. If the project seems profitable, he will invest. If not, he will save his money. The 

interest rate on the saved money is close to 0%, the investor will invest only if the project is 

profitable 

 
Based on an analysis of the project, the following costs and incomes are expected: 

• 100.000,00 € for the investment cost at period 0 

• 5.000,00€ per period for the cost of raw materials to produce the car 

• 3.000,00€ per period for the salary, the marketing and administrative costs 

• The machine produces 1 car per period and each car is sold at 10.000€ 

• The machine produces cars for 20 periods 

 
 
 

Figure 2 - Basic situation 

The basic situation is based on an investment in a machine that produces car for 20 years. 
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NPV valuation 
Based on Reuters for Volkswagen, the beta is about 1,471, the automobile sector is riskier 

than the average market because the beta is bigger than 1. We assume that the company 

as the same risk profile than Volkswagen. Consider a risk-free rate of 2% and a return for 

the market of 5%. 

Variable Value 

Beta 1,47 

Risk-free rate 2% 

Return of the market 5% 

 

CAPM formula [1, p. 193] give us, the required rate of return for the company: 

 𝑅𝑒𝑡𝑢𝑟𝑛𝑐𝑜𝑚𝑝𝑎𝑛𝑦 = 𝑅𝑖𝑠𝑘𝑓𝑟𝑒𝑒 + β ∗ (Returnmarket − 𝑅𝑖𝑠𝑘𝑓𝑟𝑒𝑒)   (2) 

 

Applying (2) with the example, it gives: 
 

2% + 1.47 * (5%-2%) = 6,41% 
 
6,41% is the expected return of the company for the investor, this is the actualization 
rate that should be used. 
 
First, costs and incomes should be actualized: 

• The investment cost (100.000,00€) is in period 0, it’s not actualized 

• The net inflow (12.000,00€) occurs at each period, the VA function of excel gives 
the actualized value: 133.172,59€ = VA ( r = 6,41% ; n = 20; VC = -12000 ) 

 
The NPV is: 133.172,59€ - 100.000,00€ = 33.172.59€ 
As the value is positive, the investor should invest. 
 
 

b) Internal Rate of Return (IRR) 
 

The internal rate of return is similar to the NPV. Again, it’s based on the actualization 

of the cash-flows, but the interest rate is not a constant. Its value is determined to obtain an 

NPV of 0. If the interest from this calculation is bigger than the cost of equity, the investor 

should invest. If it’s less, the investor should keep his money. 

 

𝐼𝑅𝑅 = ∑
𝐹𝑡

(1 + 𝑖)𝑡
− 𝐶0, 𝑤ℎ𝑒𝑟𝑒 𝑁𝑃𝑉 = 0

𝑇

𝑡=𝑜

 

 

𝐹𝑡𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑛𝑒𝑡 𝑐𝑎𝑠ℎ 𝑖𝑛𝑓𝑙𝑜𝑤 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 
𝐶0𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝑠 

 
Reference: Myers, page 113 

(3) 

 
 

 
1 https://www.reuters.com/finance/stocks/overview/VOWG_p.DE, consulted on 13/02/2019 
The value is not accurate with the reality and is only assumed for the purpose of the example 
 

https://www.reuters.com/finance/stocks/overview/VOWG_p.DE
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IRR valuation 
Based on the same data than the NPV valuation, variables have the following values: 
 

Variable Value 

Beta 1,47 

Risk-free rate 2% 

Return of the market 5% 

Return of the company (CAPM) 6,41% 

 
This gives an NPV of 33.172.59€. As the IRR should be the rate of an NPV equals to 0, 
it should be bigger than 6,41%. After incremental testing and interpolation, the IRR’s 
value is 10,3156% for an NPV of 0 which is coherent with the above formula. IRR’s rate 
is greater than the equity cost, the investor should invest. 
 

c) Pay-back time 

This technique is different of the last 2 ones, the goal is to determine after how many 

years or months the cumulated incomes of the project will be greater than the cumulated 

outcomes. If the recovery time of the costs based on the incomes is not too large, the investor 

should invest. The major flaw of the method is that it’s not based on theorical justification, 

some people will do actualization of the flows and some not. The decision will mainly depend 

of the behavior of the investor. 

 For logical reasons, some cases appear where nobody would like to invest: 

• The pay-back time never happens (negative profitability) 

• The pay-back time is greater than the investor’s horizon 

 

Outside those cases, not everybody will agree on a pay-back time of 10 years for 

a defined project. The impatient ones would like to have a recovery time of 5 years and a 

very long-term horizon of investment could find 20 years as a correct value, even if the 

project is not profitable and has an NPV below 0 due to the actualization. 

 

 

Pay-back time valuation 
Based on the same data than the NPV and IRR valuation, variables have the following 
values: 
 

Variable Value 

Beta 1,47 

Risk-free rate 2% 

Return of the market 5% 

Return of the company (CAPM) 6,41% 

IRR 10,32% 

 

Computing the value (at each period) of inflows and outflows of the project along the 

time, we obtain a pay-back time between the period 12 and 13 for a project with a life 

of 20 years. The break-even point is when the value crosses the negative and positive 
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area. Based on this criterion, a short-term investor (less than 5 years) wouldn’t like to 

invest and a long-term investor (greater than 10 years) should invest, even if the NPV or 

IRR valuation give a green light to the project. 

 

 

Figure 3 - Pay-back time technique 

The pay-back time of the basic situation is at the 13th year (x-axis is expressed in yearly format) where the 

line of cumulated cash-flows crosses the value of 0 

 
 

d) Simple rule of thumb and basic decisions drivers 
 

Some people use very basic technique to decide if they invest or not: 

➢ Cumulated incomes – cumulated outcomes (without actualization):  

People with low financial education can use it in order to have an idea if the 

project seems profitable 

 

➢ Multiple of the costs: 

Another possibility is to use a rule of thumb such as an optimal ratio (or multiple). 

It provides an information on when somebody should invest in a project. This value 

can be determined by an historic of past transactions or habits. For example, an 

optimal ratio of 1.5 means that an investor should invest when the expectancy of 

the incomes generated by the project are 1,5 times bigger that the expected 

costs. It can be a useful alternative to the previous techniques for people who 

don’t like the time-consuming calculus.  
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Simple valuation 
An investment cost of 100.000,00€ and inflows of 12.000,00€ for 20 periods. 

The non-actualized value is 100.000,00€ - (20 * 12.000,00€) = 140.000,00€ 

As it’s greater than 0, he should invest 

 

With a multiple of 1,6 and an investment cost of 100.000,00€, the expected incomes 

must be greater than 1,6 x 100.000,00€ = 160.000,00€. 

As the actualized incomes are about 133.172,59€ (from the NPV valuation), he shouldn’t 

invest. 

Summary of the results of the method: 

 Method Results 

NPV 33.172,59 € 

IRR 10,32% 

Pay-back 12,5 years 

Simple method                      140.000,00 €  

Multiple ratio Don’t invest 
 

2. Approach with Real Option  

a) Objective of the method 
 

In most investment projects, uncertainty is not correctly considered. It will be 

demonstrated by the 2 following examples. They are commonly valued without uncertainty 

or just by basic scenarios where all goes well or all goes bad (best case and worst case), 

but some events are unpredictable and can deter the project’s profitability. 

The real option valuation is a solution to this problem. The main principle is that a 

project has many additional options varying with the position of the company or by the 

information collected with the development of the project. Those options can have various 

forms (defer, time-to-built, scale, abandon, switch, growth) and will lead to higher NPV, we 

will discuss of them more precisely in the point 3.b. 

Using again the basic situation of chapter 1, the business executive should invest when 

the NPV is greater than 0, but he needs to consider the inherent risks of the project. Those 

risks will be represented by many scenarios and events that can impact the investment 

profitability. Some of them and their associated effects will be demonstrated through 

examples in the following points. 

 

1. Scandal  
 

In the example situation, the business executive wants to invest in a machine that 

produces cars with diesel motorization. If for some reasons a diesel scandal appears, 

customers will lose confidence in this type of technology (ecological reasons, fear of higher 

taxes, they have deceived by the industry) and the sales will rapidly decrease as the 

company is active in this business. It leads to a negative impact on the profitability and he 

will suffer of losses if the decrease of sales is large enough. 
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2 
 

Impact of a scandal 
Because the customers loss confidence and expect bigger taxes on this type of 
motorization, the company needs to set the car price at 10.000,00€ instead of 
20.000,00€ to be able to sell the production.  
Applying the valuation method, the results give: 
 

 Method Results (Basic) Results (Scandal) 

NPV 33.172,59 € -77.804,57 € 

IRR 10,32% Close to 0% (no profitability) 

Pay-back 12,5 years Never happen 

Simple method                      140.000,00 €  -60.000,00 € 
 
On an ex-post basis, the project seems to be deep out the money and he should not have 
invested (based on the 4 methods). 
 
 
 
 

Figure 4 - Impact of a scandal 

With the impact of a scandal, net flow per period is reduced from 12.000€ to 2.000€. It will have an impact 

on the profitability of the investment even if the situation seemed profit making at the period 0 

 
 
 
 

 
2 Image from https://www.lobservateur-automobiles.com/2018/10/16/dieselgate-audi-condamne-la-facture-sallonge-pour-

volkswagen, consulted on 15/06/2019 

https://www.lobservateur-automobiles.com/2018/10/16/dieselgate-audi-condamne-la-facture-sallonge-pour-volkswagen
https://www.lobservateur-automobiles.com/2018/10/16/dieselgate-audi-condamne-la-facture-sallonge-pour-volkswagen
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Figure 5 - Pay-back time with a scandal event 

With the impact of the scandal, the pay-back time never happens because the project will never be profitable 

 
 
 
 

2. Skyrocket increase of raw materials needed to construct the car 
 
 

Assuming that a car is mainly composed of steel in order to resist to many shocks 

during the vehicle life, the price of this material will be the cost driver of the production and 

will clearly influence the decision to invest.  

If accidentally a trade war starts between USA and China (main producers of steel) 

and the European and local supplier of steel closes due to economic or social reasons, the 

price of the steel will skyrocket. It will be difficult to be supplied in raw materials. Thanks to 

a good manager of the buying department, it will be possible to be supplied in steel by an 

African supplier but with a high cost (2 times the common price). The price will maintain this 

level for 3 years.  

The machine can produce with a high operational cost which will be passed on the 

final price of the car. Those vehicles will rapidly become unsellable due to an uncompetitive 

price, all the other competitors continue to sell cheap cars as they have negotiated many 

strategic contracts with suppliers around the world with whom they have long-term 

relationship. It protected them from changes in steel price for the 3 coming years and it was 

not possible for the investor to negotiate such conditions 

Again, both costs and incomes suffered of this unexpected price change. Costs rise 

due to the trade war and incomes cannot rise due to the strong competition on the market. 

The investment doesn’t bring profitability even the NPV was below 0 at the initial decision 

to invest. 
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Impact of a trade war 
 
The event has the net following effects: 

➢ From period 1 to 3, net inflow is equal to 7.000,00€ instead of 12.000,00€ 
 

Applying the valuation method, the results give: 

 Method Results (Basic) Results (Trade war) 

NPV 33.172,59 € -22.315,99 € 

IRR 10,32% 3,445% < 6,41% (not invest) 

Pay-back 12,5 years 15 years 

Simple method                      140.000,00 €                                 125.000,00 €  
 
On an ex-post basis, the investment doesn’t seem to be profitable with the NPV and IRR 
criterions. With the Pay-Back time method, a long-term investor can accept to spend 
money in the project. With the simple method it also seems profitable. The conclusion is 
more mitigated, even the financial theory would say to save instead of investing. 
 
 
 

Figure 6 - Impact of a trade war 

A trade war could produce a temporary influence of the net flow which are decreased to 7.000€ for the 3 

first period. Again, it’s impact negatively the profitability compared to the initial decision 
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Figure 7 – Pay-back time with a trade war 

The pay-back time in this case happens on the 15th years instead of 13th with the basis situation 

 
 
 
 
 

3. How is it possible to mitigate those risks and events? 
 

 
The events presented above are exceptional and not predictable, the business 

executive as the other competitors could not know it in advance. Their effects are more 

predictable once it happens, a rising operational cost generally leads to less profits and a 

scandal is not a signal of confidence for the customers. 

One of the solutions is the Real Option Valuation (ROV), this technique allows to 

consider many uncertainty variables. It will now be explained through the following example 

where the investor can simulate the profitability of the project across the time.  

First, he needs to consider the possible variation of steel price (main raw material as 

explained previously) based on historical data’s available on internet3. The analysis can 

consider a very large number of situations, even the trade war scenario. Historical analysis 

can give information’s about previous financial crisis and their sizes. The investor can imagine 

the impact of some events and by fixing a low rate of occurrence if the data is not available. 

A similar process can be done with the incomes with the historic of previous sales of the 

company or of the sector.  

Example of events 4: 
A drop of 30% in sales for each financial crisis, every 10 years on average 
A drop of 50% in sales for each scandal, every 5 years on average 
An increase of 120% for the price of steel, every 8 years on average 

 
3 https://tradingeconomics.com/commodity/steel provided free data on steel price 
4 Numbers are not based on a real situation, it’s only for the logic of the example 
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https://tradingeconomics.com/commodity/steel
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What about the investment cost?  

The investment cost will certainly have variations in a real-world situation. One 

solution is to consider a constant investment cost, but it induces problems in case of exceptional 

increase. A better choice is to consider a variable investment cost with the possibility to 

increase the size of the investment if it’s profitable: an incremental investment. The flexibility 

granted by the use of real options makes it possible to take decisions adapted to each type 

of situation or events. 

Incremental investment logic 
The business executive can have a real option at the beginning of his idea, just a 

concept of the project. It can be valued by a compound option. 

1) He has the right to enter in the calculation of project profitability and associated 
cash-flows, the cost to enter in this option can be of 250€, the price of an 
experienced consultant (the automated process allows a low price).  
If, in his mind, the project seems realizable, he activates the option and spends 
250€ for the consultant. The report gives him an idea of the potential incomes 
and outcomes of the project. 
 

2) After it, he can enter in a second option that gives him the right to invest in a small 
machine with a low production rate but much cheaper than the first project. The 
cost is around 5.000,00 €. If the second option is worth activating, he buys the 
small machine. 

 
3) The third option part gives him 3 choices: 

A. Continue to invest in a larger capacity if the project appears profitable. 
 

B. Pause the production if the price of steel become too high or if the sales are 
not sufficient. He only loses just some money compared to the first choice and 
can restart the production if the price goes down enough that it becomes 
optimal to restart production. 
 

C. Stop the project if it appears that’s unprofitable (abandon). The option is 
always present, but its value is deeply out the money and will surely never 
be activated. 

 
 At each time, he has the option to growth, to defer or to stop to limit the losses. 
 
 
 

The NPV is converted into an extended NPV (ENPV) where the value is given by the 

formula [2, p. 355]: 

 ENPV = normal NPV + Real options  (4) 

The main contribution of the real option theory is to increase the net present value 

with a greater the flexibility induced by the option. A traditional and negative NPV can 

become positive into an ENPV. The investment rule is to invest if the ENPV is positive. 
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b) Types of options 

Many kinds of real option exist, they have been summarized by A. G. &. J. v. d. Bergh 

[3], this paragraph refers directly to it: 

❖ Defer option: 

This means that the company has the opportunity to invest now or wait and 

acquire more information’s on future market conditions in order to avoid bad 

events or assess them. 

 

❖ Time-to-built option: 

This option gives to the holder the possibility to abandon the project if market 

conditions turn unfavorable. This refer to the incremental investment just 

explained above. 

 

❖ Alter operating scale option or the option to expand contract, shut down and 

restart: 

It’s a scalable investment allowing to take advantage of different events and of 

some market situation 

Figure 8 - Incremental investment with real option flexibility  

To avoid negative events, one possibility is to invest incrementally which grants multiple real options that will increase the 

profitability and limiting the risks of the investment. At each time, the economic agent has the opportunity to stop the 

project if it will never be profitable; wait if a bad event happens; continue to invest if it’s profitable. 
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❖ Abandon option: 

Allows to abandon the project if it turns unprofitable due to bad market 

conditions. 

The investor avoids losing money by just waiting. 

 

❖ Switch option: 

Gives a flexibility to switch one product to the other when the market conditions 

turn out to be more favorable. 

 

❖ Grow option: 

Allows the investor to increase the capacity of production to take a better 

advantage of future growth opportunities. 

  

c) Pro’s and Con’s 

As every theory and techniques, ROV has advantages and disadvantages [4]: 

Advantages: 
• It considers the uncertainty in investment projects which is not considered with the 

usual techniques or not totally. 
• It’s a dynamic system, the investor can change his behavior with the time or with 

new information’s and not only at the first period as other methods. 
• It can create more investment opportunities because it contributes to value more 

precisely the projects profitability. 
 
 
Disadvantages: 

• Some people state that a high number of real options contribute to an over 
valuation of the NPV and could be not accurate with the situation. It can be 
solved by only considering relevant option kinds directly referred to the project 
(just keep the essential). 

• Difficulties to value real option value and modelized it to the problem context, 
it must be adapted to each situation and project. It can be solved by using 
specific Monte Carlo simulation which are able to handle complex modelling. 
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3. Real Option Valuation 

a) Introduction to option valuation 

Option valuation is a very large field of research in finance with simple formulas as 

the Black Scholes model or much complex for the Asian or path dependent option. This 

research doesn’t intend to explain the whole option valuation theory but only the necessary 

tools to value real option, for  further development we refer here to the reference book 

about this subject [5]. 

Option valuation is mainly determined on the principle of risk neutral [5, p. 332] Each 

investor has his own preference in terms of risk, some are more risk adverse and some more 

risk taker. As it’s impossible to know the preference of everybody at every instant, options 

are valued under risk neutral. The investor will be indifferent to the risk when making an 

investment decision. This investor is placed in the middle of the risk spectrum as shown on this 

scheme: 

Figure 9 - Risk appetite5 

Most of the investors are risk adverse and will require higher return (or utility) by unit of risk compared to a 

risk neutral investor 

 

It allows us to compute the value of the option by non-taking into account the risk 

preference for the moment. Only the expectancy of the return of the investment will be 

necessary. 

 

 

 

 

 
5 Image from https://netwar.wordpress.com/2007/07/28/marathon-and-risk-preference/ 

https://netwar.wordpress.com/2007/07/28/marathon-and-risk-preference/
https://www.google.be/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjG-5n0lNTgAhWF-6QKHXmcCR0QjRx6BAgBEAU&url=%2Furl%3Fsa%3Di%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dimages%26cd%3D%26ved%3D%26url%3Dhttps%253A%252F%252Fnetwar.wordpress.com%252F2007%252F07%252F28%252Fmarathon-and-risk-preference%252F%26psig%3DAOvVaw0v2LVAt3TS9a4F09j99swZ%26ust%3D1551090556074661&psig=AOvVaw0v2LVAt3TS9a4F09j99swZ&ust=1551090556074661
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b) Martingale 

A martingale is a stochastic process where the expectancy of the future value is based 

on the available information at time 0, which is its value at time 0. Saying it in a simplified 

way, the best predictor of a series (a stock) is its present value. It relies directly to the risk-

neutral valuation because the expected return (necessary to determine the value of the 

option) is the present value that is available in most of the cases by looking the spot price of 

a stock for example.  

c) Brownian motions 

To achieve a martingale, and by the same time a risk neutral valuation, we need to 

have a random process with a mean of 0 because the process expectancy is the present 

value (no change on average is assumed in the future). Many distributions tend to a normal 

distribution when a high number of simulations are used which is the basis of the central limit 

theorem (CLT)6. A logical solution is a random process distributed according to a normal 

distribution. It’s the purpose of a Brownian motion (also called Wiener motion). 

Brownian motion is represented by a normal distribution of the event in a portfolio. 

Some days we will have positive variations that increase the value of a stock, and another 

day a negative impact. On the long term, those effect are compensated because Brownian 

motions follow a normal distribution of mean equal to 0 and variance of 1. Those increments 

are depended of time at the rate √𝑡. It’s generally presented as follow: 

7 𝑑𝑊 = √𝑡 ∗ 𝑟𝑛𝑜𝑟𝑚(0 , 1) (5) 

 

It’s means that an error or a change will be accumulated at rate 1 by time. 

9 

 

 

 
6 [25] 
7 Another symbol (dz) is used too in the literature and has the same signification 
9 Image from http://www.maxicours.com/se/fiche/7/1/415671.html, consulted on 16/02/2019 

http://www.maxicours.com/se/fiche/7/1/415671.html
https://www.google.be/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiOjLG04cLgAhWEPFAKHYZQB3wQjRx6BAgBEAU&url=http%3A%2F%2Fwww.maxicours.com%2Fse%2Ffiche%2F7%2F1%2F415671.html&psig=AOvVaw1Po2LRE8JjUEHEtzAwrvUo&ust=1550492644329171
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d) Risk neutral valuation 

By combining the 2 previous concepts, we can have a free arbitrage rule. Martingale 

is achieved through Brownian motions; the price of the stock cannot differ from the actual 

value in a risk neutral perspective. If it was not the case, one can short the stock to obtain a 

free risk profit if the price is overvalued compared the risk neutral measure or take a long 

position if the price is undervalued. 

To summarize, we need: 

1. A stochastic process following a normal distribution (mean 0, variance 1): 

Brownian motion 

2. It gives a martingale, a process where the expectancy is the present value 

3. Which gives a free arbitrage rule and a risk neutral valuation 

With those concepts, it’s possible to compute the risk neutral probability that will be 

imputed into a formula giving a risk neutral value for the option.  

 

How to consider the risk preference? 

It’s not useful to have a pricing with risk preference, most of the options are valued in 

risk neutral probabilities. The changes from one risk world to another (risk-neutral) has been 

demonstrated through the Girsanov theorem [6, p. 70] and Radon-Nikodym theorem. Those 

theorems are outside of the scope of this paper and it’s not necessary to explain it in more 

details. The results are now expressed in terms of risk-neutral measure. 

 

4. Mathematical background 
 

To solve an option valuation problem, 4 ways are possible: 

• Binomial tree or Decision tree base model [5, p. 272]: 

It consists in a tree where the price of stock can increase with a up probability (p) 

or decrease with a down probability (d). Some trees include a probability where 

the price stay at the same level, it’s named trinomial tree. 

A solution can be obtained if the final payoff rule at the maturity is known, it 

allows to compute the backward values in time using the probability rules of the 

problem which gives a solution at time 0. 

 

• Analytical solution [7, p. 41]: 

The most complex method, it requires to solve the problem by using partial 

derivative equations (PDE). The result is the most precise compared to the 

methods, but it doesn’t allow to find a solution for complex problems. This 

method will be explained in detail in the next point. 
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• Finite Difference Method [5, p. 477]: 

This method is based on the differential equation of the problem (PDE) which is 

converted into a set of differential equations solved iteratively. 

 

• Monte Carlo Simulation [5, p. 468]: 

It’s based on a simulation where the parameters are defined at the initial time 

of the problem and multiple scenarios are generated using random process. 

When the number of simulations is large enough, values will converge to the 

solution of the problem. It requires a lot of time of computation but is able to 

manage complex problem efficiently. 

 

a) Analytical solution 

To find an analytical solution of an option X(t), it’s necessary to find the expectancy 

at time 0 of a stock with spot price S with a strike K, actualized continuously at the rate 

µ and at the optimal time t’. The solution requires to solve an equation with the following 

form: 

 𝑋(𝑡) = 𝐸0[𝑒
−µ∗𝑡′ ∗ (𝑆𝑡 − 𝐾)] (6) 

 

As it involves expectation, it cannot be solved directly. The first step is to set 

parameters of the process: 

S can follow a Brownian Motion process: 

 𝑑𝑆 = 𝛼 ∗ 𝑑𝑡 + 𝜎 ∗ 𝑑𝑊    𝑤ℎ𝑒𝑟𝑒 𝑑𝑊 = √𝑡 ∗ 𝑟𝑛𝑜𝑟𝑚(0; 1) (7) 

Alpha (𝛼) represents the drift of the process and Sigma (𝜎) is the volatility of S 

A stock generally follows a Geometric Brownian Motion (GBM), it allows to have a log-

normal distribution of the price changes [7, p. 35]: 

 𝑑𝑆 = 𝛼 ∗ 𝑆 ∗ 𝑑𝑡 + 𝜎 ∗ 𝑆 ∗ 𝑑𝑊    𝑤ℎ𝑒𝑟𝑒 𝑑𝑊 =  √𝑡 ∗ 𝑟𝑛𝑜𝑟𝑚(0; 1) (8) 

For some commodities, a mean-reverting process is used. Stock price tends to go to the 

mean level (𝑆̅) at long term with the rate of reversion (𝜂), it’s defined as: 

 𝑑𝑆 =  𝜂 ∗ (𝑆̅ − 𝑆) ∗ 𝑑𝑡 + 𝜎 ∗ 𝑑𝑊    𝑤ℎ𝑒𝑟𝑒 𝑑𝑊 = √𝑡 ∗ 𝑟𝑛𝑜𝑟𝑚(0; 1) (9) 

The next step must be done through a formula: Ito’s Lemma. 

 

b) Ito’s lemma 

Ito’s lemma is a Taylor series that defines the derivative of a stochastic process. It 

requires to write the Taylor series of the main variables as the option is mainly affected 

by S and by the time t, they will be used in the series. F represents here the value of the 

option 
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   Write the first derivative of the variables, then the second derivatives, then the 

 higher order, … 

 𝑑 𝐹(𝑆, 𝑡) =  
𝜕𝑆

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝑆
𝑑𝑆 + 

1

2
∗ [

𝜕2𝐹

𝜕2𝑆
𝑑𝑆2 + 

𝜕2𝐹

𝜕2𝑡
𝑑𝑡2 +

𝜕2𝐹

𝜕𝑆𝜕𝑡
𝑑𝑆 𝑑𝑡] + ⋯ (10) 

dS is already known with the Brownian motion  

In the case of a perpetual option, the first derivative by t of (9) can be eliminated. 

The originality of the Ito’s approach is that the term containing “𝑑𝑡2” (terms of order 

equal or bigger than 3) tends faster to 0 than the other term (S), so it can be set equal 

to 0.  The term containing “dS dt” is the correlation between S and t, it can also be 

considered 0. The variance of dS can be calculated based on the Brownian Motion and 

applying the same rules for dt. 

Ito’s lemma finally gives: 

 𝑑 𝐹(𝑆, 𝑡) =  
𝜕𝑆

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝑆
𝑑𝑆 +

1

2
∗

𝜕2𝐹

𝜕2𝑆
∗ 𝜎2 ∗ 𝑆2 ∗ 𝑑𝑡 (11) 

 

c) Bellman’s equation 

The variation in the option value (dF) must be equal to the value of the option (F) 

multiplied at each time by the risk-free rate (r), this relation avoids any arbitrage 

opportunity (equation 11). Ignoring the derivative following “t” in (10), reducing all the 

terms and by equating it to the required rate of return “r” of the project and by 

considering that the stock gives a dividend at the rate (𝛿) [8, p. 148], the results can be 

computed in one formula, the Bellman’s equation which gives an optimal solution based 

on the actual value. 

 

𝛿 = 𝜇 − 𝛼 = 𝑟 +  𝜙 ∗ 𝜎 ∗ 𝜌𝑆;𝑀 − 𝛼 

 
Where: 

• 𝛿 is a kind of measure of the dividend rate (even if 
the stock doesn’t pay any dividend) 

• 𝜇 is the risk adjusted trend 

• 𝛼 is the trend of the Brownian Motion 

• 𝜙 is the market price of risk which can define as 

𝜙 =
(𝑟𝑀 − 𝑟)

𝜎𝑀
 

• 𝑟𝑀 is the expected return on the market 

• 𝜎𝑀 is the volatility of that return 

• 𝜎 is the volatility of the Brownian Motion 

• 𝜌𝑆;𝑀 is the correlation between the stock (S) and the 

market (M) 
 

𝛿 = 𝜇 − 𝛼 = 𝑟 + 
(𝑟𝑀 − 𝑟)

𝜎𝑀
∗ 𝜎 ∗ 𝜌𝑆;𝑀 − 𝛼 

 

(12) 
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 𝐹(𝑆) ∗ 𝑟 ∗ 𝑑𝑡 = 𝑑𝐹 (13) 

 (𝑟 −  𝛿) 𝐹′ +
1

2
∗ 𝐹′′ ∗ 𝜎2 ∗ 𝑆2 − 𝑟 ∗ 𝐹 (14) 

"The principle of optimality can be articulated as follows. An optimal policy has the 

property that, no matter what state and initial decision, the remaining decisions must be 

an optimal policy in relation to the state resulting from the first decision "(Bellman, 1957).

  

d) Partial Differential Equations (PDE) 

To solve the Bellman’s equation, a function with a suited form to the problem is 

needed. Classically, 2 forms exist: 

• 𝐴 ∗ 𝑒β∗S for an arithmetic Brownian motion 

• 𝐴 ∗ 𝑆𝛽   for a geometric Brownian motion 

Where A and 𝛽 represent a constant 

As a geometric Brownian motion have been used, the second form must be used. 𝛽 

has generally 2 roots (the first is positive, the second is negative) and the function takes 

the form: 

 𝐴1 ∗  𝑆𝛽1 + 𝐴2 ∗  𝑆𝛽2 (15) 

 

Boundary conditions have to be fixed to simplify the problem [7, p. 49], it depends 

if the option is a call or a put. As most of the real option are valued as a call, the following 

boundary conditions are applied: 

• If the stock price is equal to 0, the option price will also be 0:   

F (0) = 0 

 

• At the optimal price (S*), the option value must be equal to its payoff:  

F (S*) = S* - K 

 

• Smooth passing condition: the slope of the option value must be equal to the slope 

of the payoff at the optimal level (S*) 

F’(S*) = 1 

Boundary condition Call Put 

1° F (0) = 0 lim
𝑆→ ∞

𝐹(𝑆) = 0 

2° F (S*) = S* - K F (S*) = K - S* 

3° F’(S*) = 1 F’(S*) = -1 

Results 
𝐴2 = 𝛽2 = 0 

 
Only keep the positive root 

𝐴1 = 𝛽1 = 0 
 
Only keep the negative root 



27 
 

 

Figure 10 - Pay-off of a call and a put 

A call is a long position on a financial product and a put a short position10 

 

 

e) Solution of the system 

Solution to the system is given by the following formula which results of a basic root 

calculation. 

 

𝐴1 = 
𝑆∗ − 𝐾

(𝑆∗)𝛽1
 

 

𝛽1 = 0.5 − (
(𝑟 − 𝛿)

𝜎2 ) + √(
𝑟

𝜎2
− 0.5)

2

+ 
2 ∗ 𝑟

𝜎2
 

 

𝐴2 = 𝛽2 = 0 
 

F* = 
𝛽1 

𝛽1−1
 * K 

 

(16) 

 

To obtain the problem solution of a perpetual option, the formula only requires the 

value of S and the value of the strike K.  The value of F* means the optimal value that S 

needs to reach before the optimal time to activate the option or simpler, the level that S 

must reach before activating the option in order to compensate the uncertainty involved 

on the underlying. On the next page, a summary scheme of the procedure of how to 

resolve a classic real option value problem is provided and will be used to solve a more 

complex model. 

 
10 Image from https://www.option-dojo.com/en/le/summary.html, consulted on 27/04/2019 

https://www.option-dojo.com/en/le/summary.html
https://www.google.be/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiQ28v6m63iAhXF2KQKHQCACOcQjRx6BAgBEAU&url=https%3A%2F%2Fwww.option-dojo.com%2Fen%2Fle%2Fsummary.html&psig=AOvVaw3imG2mfheVeaL9mUk3NIAd&ust=1558548535072013
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Figure 11 - Summary scheme to solve a PDE 

 

 

Real Option Valuation:

Solving PDE - scheme

Definitions of the basis parameters and Brownian Motions

Set the general form of the problem: Benefit variables – Cost variables

Calculate variance and covariance between the parameters

Use Ito s Lemma to obtain the components of the PDE

Calculate the results of increment terms with a board

Set Risk-free portfolio and arbitrage conditions

Bellman s equation and boundary conditions

Find the most suited form of the solutions

Find delta values Replace those values Dividing by dt

Substract terms that goes to 0 

with the board

Substitute solution into 

Bellman s equation

Dividing by the global variance 

of the option

Find the roots and constant

Solution

Substitute others values 

with the help of the board

General forms:

1

2

3

4

5
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Part II : 

Practical approach 
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III. Practical approach with a photovoltaic project 

 

This chapter will be focused on a real option valuation on a photovoltaic project. A 

presentation of the technical functionalities of a solar will be presented, followed by the Belgian 

context case. The next point will address the current literature on the subject and 3 valuation 

models will conclude with the results. 

1. How works a solar panel 

a) Technical functionalities 

11 

 

How works a solar panel:  

Solar panels basically generate electricity from sunlight. Those panels are usually laid on the 

roof and consist of solar cells: a thin layer of silicon with a negative charge at the top and a 

positive charge at the bottom protected between two glass plates. With a chemical reaction [9, 

p. 335], the panels generate direct current which is converted into alternating current by an 

inverter. The electricity generated goes directly to the electricity system of the house. When more 

solar power than necessary is produced, the excess goes to the grid and the meter will turn 

upside down.  At night and on dark days, or if the electricity demand is greater than the 

production, grid will supply the difference to avoid a black-out (need and offer of electricity 

are always equal). 

 

 
11 Image from https://lumiworld.luminus.be/fr/investissements-malins/choisir-vos-panneaux-solaires/ 

https://lumiworld.luminus.be/fr/investissements-malins/choisir-vos-panneaux-solaires/
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12 

 

The nominal power is expressed in Watt peak (called Watt-crête in French – Wc), it 

corresponds to a unit of measure where: 

• It represents the maximal electricity power delivered by the installation 

• A standard sunshine of 1000 W/m2 with a heat of 25°C 

In 2019, 2 mains technologies are available to construct a solar panel: 

• Polycrystalline: the cheapest kind of solar panel but it has a lower production 

rentability (around 150 Wc/m2) 

• Monocrystalline: a bit more expensive than the previous ones but produces more 

(around 200 Wc/m2) 

Productivity is expressed in Wc and the production in Watt-hours (Wh)13. The difference 

comes from the fact that the productivity reflects the production of the installation based on 

optimal conditions. A solar panel has a life-expectancy about 20 years to 25 years and 10 

years for the inverter which must be changed once on the total life of the installation. It also 

exists a kind of solar panel that convert sunlight into heat, but this research is only focused on 

the most classical one called “photovoltaic panel”.  

 

 

 

 

 
12 Image from https://www.pinterest.com/pin/414401603183250304/ 
13 Reminder: 1 mWh = 1.000 kWh, useful website about the solar panel energy: 
http://document.environnement.brussels/opac_css/elecfile/IF%20ENERGIE%20Mod4%20Facteurs%20production%20FR  

https://www.pinterest.com/pin/414401603183250304/
http://document.environnement.brussels/opac_css/elecfile/IF%20ENERGIE%20Mod4%20Facteurs%20production%20FR
https://www.google.be/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjgqoWwif3hAhVB2aQKHc5sBbQQjRx6BAgBEAU&url=https%3A%2F%2Fwww.pinterest.com%2Fpin%2F414401603183250304%2F&psig=AOvVaw0J-DQ8-BEqcpaVpcyI3zrT&ust=1556894300203589
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b) Belgium context 

Belgium is a federal state divided into multiple level of decision which have different 

roles and responsibilities: 

1. Federal level (which is common to the whole country) 

 

2. Region level 

There are 3 regions: Wallonia, Flemish and Brussels 

 

3. Community level 

There are 3 official languages in Belgium and represented by a specific 

community which concern all the education and people related missions of the 

state. French community is formed by a major part of Wallonia and of Brussels. 

Flemish community is formed by the Flemish region and a part of Brussels. 

German community is formed by a part of Wallonia. This level will not have 

importance for the research but is provided here for information. 

 

4. City level 

Cities are regrouped in a king of cluster (called “Commune” in French and 

“Gemeente” in Dutch); this level can grant some extra subsidy or collect specific 

taxes. 

14 

 

The following explications concern only solar panel installation with a power 

inferior to 10 kW, which represents the most widespread size of panel at the 

household level. 

 

 
14 Image from https://chrisnicastro12.wordpress.com/2013/10/01/les-jeunes-et-la-jeunesse/ 

https://chrisnicastro12.wordpress.com/2013/10/01/les-jeunes-et-la-jeunesse/
https://www.google.be/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiy-cL-2ZjiAhVK16QKHUdPDeMQjRx6BAgBEAU&url=https%3A%2F%2Fchrisnicastro12.wordpress.com%2F2013%2F10%2F01%2Fles-jeunes-et-la-jeunesse%2F&psig=AOvVaw3AM4NyX7cMBOD0kO2SD0re&ust=1557843523211317
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c) Situation in Walloon region 
 

i. CV system (called Solwatt) 

A system of green certificates called in French “Certificats verts” (CV) has been set 

up under the impulse of the European Union. A directive allowing a new kind of subsidy 

came into force from the 01/01/2002. 

1 CV (for each mWh produced) were granted by installation for 15 years, this 

amount was determined individually by installation. The applicable regime is defined at 

the initial decision to invest (when a minimal deposit of 20% have been paid or when a 

green loan have been contracted). 

The 20/12/2007, an energy minister of Wallonia (André Antoine – CDH)15 wanted 

to develop the solar energy sector. His main idea was to grant 7 CV instead of 1 CV by 

mWh produced. The amount of CV decreases slightly with the size of the installation but 

remains relatively generous. This decision has had the consequence to lead literally to a 

run to install solar panel on the roofs, this situation was unsustainable for the budget of 

the region. 

The 01/12/2011, the granting period were reduced to 10 years instead of 15 years 

to decrease the generation of CV, the market were not able to absorb this quantity of 

CV. 

The 01/04/2012, the granting regime were downgraded in the sense that the 

amount of CV decrease with the life of the installation. On 10 years, an installation 

receives 60 CV. 

The 01/09/2012, the granting regime was again downscaled. On 10 years, an 

installation receives 50 CV. 

The 01/04/2013, a transitory regime has been applied. On average, 1.25 CV were 

granted for each mWh produced for 10 years. 

 

 

 

 

 

 
15 Historic based on multiple press articles: 
https://www.rtbf.be/info/belgique/detail_autopsie-episode-6-le-jour-ou-le-photovoltaique-wallon-a-
derape?id=9377534 
https://www.rtl.be/info/magazine/c-est-pas-tous-les-jours-dimanche/photovoltaique-1061844.aspx 
Consulted on 27/04/2019 

https://www.rtbf.be/info/belgique/detail_autopsie-episode-6-le-jour-ou-le-photovoltaique-wallon-a-derape?id=9377534
https://www.rtbf.be/info/belgique/detail_autopsie-episode-6-le-jour-ou-le-photovoltaique-wallon-a-derape?id=9377534
https://www.rtl.be/info/magazine/c-est-pas-tous-les-jours-dimanche/photovoltaique-1061844.aspx
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CV granted by mWh produced for an installation of 10 kw16: 

Age of the 
installation 

07/2002 
– 

19/12/2007 

20/12/2007 
– 

31/12/2008 

01/01/2009 
– 

31/12/2009 

01/01/2010 
– 

30/11/2011 

01/12/2011 
– 

31/03/2012 

01/04/2012 
– 

31/08/2012 

01/09/2012 
– 

31/03/2013 

01/04/2013 
– 

28/02/2014 

1 1 12 12 12 12 10 8 2,5 

2 1 12 12 12 12 9 7 2,5 

3 1 12 12 12 12 8 7 2,5 

4 1 12 12 12 12 7 6 2,5 

5 1 12 12 12 12 6 5 2,5 

6 1 12 12 12 12 6 5 2,5 

7 1 12 12 12 12 5 4 2,5 

8 1 12 12 12 12 4 3 2,5 

9 1 12 12 12 12 3 3 2,5 

10 1 12 12 12 12 2 2 2,5 

11 1 12 12 0     

12 1 12 9 0     

13 1 12 6 0     

14 1 12 3 0     

15 1 12 0 0     

Total 15 180 150 120 120 60 50 25 

 

 

Figure 12 - Granting regime of CV 

The regime of CV granting has been very generous in 2008 (in a context of financial crisis) and slightly 

decreases to the end of this system in 2014.  

 

 

 

 

 
16 Data based on the report from the CWAPE (Walloon regulator of energy): 
https://www.cwape.be/?dir=0.5&faqid=124 consulted on 27/04/2019 

https://www.cwape.be/?dir=0.5&faqid=124
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Figure 13 - Price of CV 

Price of CV has followed a decreasing trend to reach the minimum level guarantee by the state at 65€/CV 

 

 

About the price of a CV, it ranges from a minimum basis (65€)17 guaranteed by the 

region (the root of the financial deep) and the amount of the penalty (around 100€)18. 

If values outside of this range happen, an arbitrage opportunity could occur: 

• Better to sell the CV at the guarantee price (65€) than the market price 

• Pay the penalty (100€) that buying it more expensively on the market 

 

ii. Qualiwatt – temporary direct subsidy 
 

After the crisis of CV, the Walloon region initiates a new formal direct subsidy, more 

flexible and should avoid the reef of the previous system. Qualiwatt is a direct subsidy 

(PB) granted annually in cash for 5 years. It was in application from 01/03/2014 to 

30/06/2018. The goal is to achieve a pay-back time of 8 years with a return of 5%. 

An extra subsidy (PC) was granted for low-income household to achieve a pay-back time 

of 8 years with a return of 6,5%. Those values were based on a common installation of 

3 kWc. The formula considers multiple variables and becomes more complex.19 

 

 
17 https://www.cwape.be/?lg=1&dir=3.4.00, consulted on 13/05/2019 
18 https://www.cwape.be/?lg=1&dir=3.4.00, consulted on 13/05/2019 
19 https://www.cwape.be/?dir=6.2.07, consulted on 13/05/2019 

https://www.cwape.be/?lg=1&dir=3.4.00
https://www.cwape.be/?lg=1&dir=3.4.00
https://www.cwape.be/?dir=6.2.07
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The basis prime (PB) for a given period is equal to: 

 𝑃𝐵𝑖 = min(𝑃; 𝑃𝑀𝐴𝑋) ∗

𝑆𝐺𝑗

5
𝑃𝑟𝑒𝑓

 (17) 

Where SG is given by 

 

𝑆𝐺𝑗 = [(𝑃𝑅𝐸𝐹 ∗ 𝐼𝑗 ∗ (1 + 𝑑𝑗)) + (𝑂&𝑀𝑗 ∗  ∑(1 + 𝑐𝑖,𝑗)
𝑖

8

𝑖=1

)

− [∑[(𝐶𝑂𝑀𝑗 ∗ (1 + 𝑎)𝑖) ∗ (𝐸𝐿𝐸𝐶𝑗 ∗ (1 − 𝑝𝑗)
𝑖−1

)

8

𝑖=1

+ (𝑅𝐸𝐺𝑗 ∗ (1 + 𝑏)𝑖) ∗  𝜆𝑖,𝑗 ∗ (𝐸𝐿𝐸𝐶𝑗 ∗ (1 − 𝑝𝑗)
𝑖−1

)]]] 

(18) 

 

• 𝑃𝑀𝐴𝑋: 3 kWc 

• 𝑃𝑅𝐸𝐹 : 3 kWc 

• I: the investment cost 

• O&M: Maintenance and operating costs. 

Fixed at 0,75% of the installation cost for each period 

For period 10, an additional amount of 250€ is added to reflect the replacement 

cost of the undulator 

• COM: the price of the commodity 

• ELEC: the production of electricity.  

This variable is determined individually for each installation based on the location 

with the data from European Union research database (available at  

http://re.jrc.ec.europa.eu/pvgis/ ) with the following technical specificities: south-

east to -south-west orientation, gradient between 15° and 50°, which guarantees 

90% of an optimal production 

• a: parameter to index the commodity price, fixed at 1%/year 

• b: parameter to index the reglementary price, fixed at 3%/year 

• c: parameter to index the operating costs to the inflation 

Fixed at 2%/year for all the periods 

• d: parameter to index the installation cost 

Fixed at 0%/year for all the periods 

• p: parameter to reflect the loss of production due to the age of the installation 

Fixed at 0.5%/year for all the periods 

• 𝜆𝑖,𝑗 : Auto consumption assumed for a given period 

Fixed at 100% for period 1 or 2 for most of the periods 

Fixed at 30% for period 2-3 to 20 for most of the periods 

 

 

 

 

http://re.jrc.ec.europa.eu/pvgis/
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The parameters are summarized in the following table, the case of the region of 

Mouscron (Sibelga/ Ores Mouscron) is provided as example20: 

 

 

The last 2 columns represent the maximal value per year of the subsidy in the basis 

version (most of the cases) and the additional subsidy (only for low-income). 

Formula to compute the additional subsidy (PC) is the following:  

Set PC to achieve:     

 𝑉𝐴𝑁𝑗 = −𝐼𝑇𝑂𝑇,𝑗 + ∑
𝐶𝐹𝑖,𝑗 

(1 + 6,5%)𝑖

20

𝑖=1

= 0 (19) 

Where 

 𝐶𝐹𝑖,𝑗 = [𝑃𝐵𝑗 + 𝑃𝐶𝑗] + [𝐶𝑂𝑀𝑖,𝑗 ∗ 𝐸𝐿𝐸𝐶𝑖,𝑗 + 𝑅𝐸𝐺𝑖,𝑗 ∗  𝜆𝑖,𝑗 ∗ 𝐸𝐿𝐸𝐶𝑖,𝑗] − 𝑂&𝑀𝑖,𝑗 (20) 
 

PC is finally given by:  

 𝑃𝐶𝑗 = min(𝑃; 𝑃𝑀𝐴𝑋) ∗
𝑃𝐶𝑗

𝑃𝑅𝐸𝐹
  (21) 

  

The effect of this subsidy was an increase of solar panel installations in Wallonia with 

peaks occurring just before period switching’s as seen below on the graph. A switch has 

generally the effect to decrease the subsidy, people have an interest to wait the end of 

the period to know the subsidy amount if they invest the next month. One exception can 

be noted for the period 7 in January 2017 where the subsidy increases the next period, 

people don’t had interest to invest at that time. 

 

 

 

 
20 Report of the data’s is available at https://www.cwape.be/?lg=1&dir=6.2.09, consulted on 27/04/2019 

I COM REG PB max PC max

EUR HTVA/kWc EUR TVAC/MWh EUR TVAC/MWh EUR/year EUR/year

01/03/2014‐30/06/2014 1 2.285,00             95,03                      102,20                              1.017,00      126,00           

01/07/2014‐31/12/2014 2 2.285,00             80,45                      90,51                                 1.023,00      133,00           

01/01/2015‐30/06/2015 3 2.100,00             81,57                      88,21                                 862,00         100,00           

01/07/2015‐31/12/2015 4 1.900,00             85,66                      88,26                                 708,00         55,00             

01/01/2016‐30/06/2016 5 1.900,00             92,53                      110,57                              628,00         5,00               

01/07/2016‐31/12/2016 6 1.840,00             93,09                      109,92                              586,00         -                 

01/01/2017‐30/06/2017 7 1.789,00             79,33                      112,22                              607,00         26,00             

01/07/2017‐31/12/2017 8 1.725,00             83,87                      112,22                              544,00         1,00               

01/01/2018‐30/06/2018 9 1.654,00             86,51                      112,26                              444,00         -                 

Period

https://www.cwape.be/?lg=1&dir=6.2.09
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Figure 14 - Effect of Qualiwatt subsidy 

The effect of Qualiwatt subsidy was to increase the number of solar panel installations in Wallonia. People 

invested especially before a reduction of the subsidy. One exception can be noted for 01/2017 where the 

subsidy increased at the next period, it was not optimal to invest before. 

 

 

iii. Uncertainty period and Prosumer tax case 

Between 01/07/2018 and 01/01/2020, no new subsidy or legislation change 

should happen. Solar panel are now providing enough profitability that no subsidy is 

necessary to obtain a comfortable level of return. To cover the cost of the CV bubble, 

the region has no other choice to find money through a new tax. The question for the 

Walloon government is:  

Who should pay this tax? 
People with solar panel (who benefits of the CV system or Qualiwatt subsidy) or 

people without solar panel (all the users of the electricity grid)? 

Politicians of the Walloon region choose the first option and a new tax should 

normally be applied on the 01/01/2020. This tax is called “Prosumer tax” and is 

proportional to the amount of electricity injected in the grid which cause additional costs 

for the electricity grid manager. An example of the probable amount of the tax is 

represented in the following table: 
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This number represents the tax (in €) for each kWe (minimum between kWc and kVA) of 

electricity injected in the grid21, based on statistic auto consumption is valued at 37,76%22. 

 Belgian political world is very complex and uncertain, the energy minister of 

Walloon region (Jean-Luc Crucke – MR) announces in 01/2019 that people who install 

a solar panel before the 07/2019 will not pay this tax.23 It induces a new run to invest24 

for the householders whose don’t want to pay this additional cost. This kind of behavior 

is common in Belgium because it’s the country with the higher tax pressure in the world25, 

people prefer to avoid new taxes if they can26. 

 In 03/2019, a new problem occurs: The Walloon government loses his majority27 

and the tax exemption cannot be voted. Nobody knows at this moment if an alternative 

majority can be found to vote the legislative text. People continues to invest to avoid the 

probable tax without the certainty if they will pay it. 

 In 04/2019, a final answer is given: The tax exemption is not granted. Everybody 

with a solar panel in Wallonia will pay the Prosumer tax, even people whose have invest 

between the 2 announces have change their behavior and have invested. 

 The end of the story is not arrived yet, elections will happen at the end of 

05/2019 and changes can again happen. Even with the Prosumer tax, the cost of CV 

debt is too high to be absorbed by the grid manager (Elia). A partial solution have been 

found with a securitization with a bank (BNP Paribas) which lags the cost on several years 

and cancels the exceed of CV on the market but a report of the CWAPE tends to show 

that the electricity price will rise for every consumer at the horizon of year 2025-2030. 

An increase of electricity price of 61,16€/year can occur for an average household or 

 
21 Data from https://www.cwape.be/?dir=0.5&lg=1&faqid=254, consulted on 27/04/2019 
22 https://www.cwape.be/?lg=1&dir=7.9, consulted on 27/04/2019 
23 https://www.lesoir.be/221290/article/2019-04-29/les-detenteurs-de-panneaux-solaires-devront-finalement-
payer-pour-le-reseau 
24 One article on the subject: 
https://www.7sur7.be/7s7/fr/1536/Economie/article/detail/3526143/2019/04/18/Typiquement-belge-la-
Wallonie-introduit-le-tarif-prosommateur-et-la-Flandre-le-supprime.dhtml, consulted on 27/04/2019 
25 https://www.oecd.org/tax/taxing-wages-belgium.pdf 
26 One example can be found in this press article, it’s just a global idea of the situation and the behaviors: 
https://www.rtbf.be/info/societe/detail_la-fraude-fiscale-le-sport-national-quel-est-le-secret-de-la-
reussite?id=7975166, consulted on 27/04/2019 
27 https://www.lecho.be/economie-politique/belgique/wallonie/le-gouvernement-wallon-a-perdu-sa-
majorite/10108306.html, consulted on 27/04/2019 

https://www.cwape.be/?dir=0.5&lg=1&faqid=254
https://www.cwape.be/?lg=1&dir=7.9
https://www.lesoir.be/221290/article/2019-04-29/les-detenteurs-de-panneaux-solaires-devront-finalement-payer-pour-le-reseau
https://www.lesoir.be/221290/article/2019-04-29/les-detenteurs-de-panneaux-solaires-devront-finalement-payer-pour-le-reseau
https://www.7sur7.be/7s7/fr/1536/Economie/article/detail/3526143/2019/04/18/Typiquement-belge-la-Wallonie-introduit-le-tarif-prosommateur-et-la-Flandre-le-supprime.dhtml
https://www.7sur7.be/7s7/fr/1536/Economie/article/detail/3526143/2019/04/18/Typiquement-belge-la-Wallonie-introduit-le-tarif-prosommateur-et-la-Flandre-le-supprime.dhtml
https://www.oecd.org/tax/taxing-wages-belgium.pdf
https://www.rtbf.be/info/societe/detail_la-fraude-fiscale-le-sport-national-quel-est-le-secret-de-la-reussite?id=7975166
https://www.rtbf.be/info/societe/detail_la-fraude-fiscale-le-sport-national-quel-est-le-secret-de-la-reussite?id=7975166
https://www.lecho.be/economie-politique/belgique/wallonie/le-gouvernement-wallon-a-perdu-sa-majorite/10108306.html
https://www.lecho.be/economie-politique/belgique/wallonie/le-gouvernement-wallon-a-perdu-sa-majorite/10108306.html
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an increase of 17,4751 EUR/mWh [10, p. 93]. For the region, it means a debt of 1.76 

billion € to cover the cost of the CV system. 

 

d) Situation in Flemish region 
 

i. CV system (called Groenestroomcertificaten - GSC) 

Before the 01/01/2013, one Green Certificates (called GSC28 in Dutch) and was 

granted for each 1000 kWh29 of produced electricity. This CV had a guarantee price 

of 150€ and was granted for 10 years30. The formula is: 

 𝐺𝑆𝐶 = 𝐸𝐿𝐸𝐶 ∗
1

1000
 (22) 

Where: 

• ELEC is the amount of green electricity produced, expressed in mWh  

• GSC is round at the unity (the surplus is transferred to the next month) 

 

From 01/01/2013 to 14/06/201531, one CV was granted for a minimum of 1000 

mWh of produced electricity + a band factor (Bf). The band factor is like an additional 

amount of produced electricity to receive 1 GSC, it’s reflects the evolution of electricity 

price.32 The applicable regime depends of the first time of commissioning. 

 𝐺𝑆𝐶 = 𝐸𝐿𝐸𝐶 ∗ 𝐵𝑓/1000 (23) 

Where: 

• ELEC is the amount of green electricity produced, expressed in mWh  

• Bf is the band factor varying through the time 

A minimal price of 93€33 was guaranteed for each GSC for 15 years. This system 

guarantees a minimal return of 5% annually on the investment.34 

 

 

 

 

 

 
28 https://www.fluvius.be/nl/thema/zonnepanelen/wat-zijn-groenestroomcertificaten, consulted on 27/04/2019 
29 https://www.vreg.be/nl/begrippenlijst#groene_stroom, consulted on 27/04/2019 
30 https://www.vreg.be/nl/algemene-info-over-steuncertificaten, consulted on 27/04/2019 
31 https://www.fluvius.be/nl/thema/zonnepanelen/heb-ik-recht-op-groenestroomcertificaten,  
     consulted on 27/04/2019  
32 https://www.energiesparen.be/zonnepanelen-met-een-startdatum-van-1-juli-2014-tot-en-met-31-december-2014, 

 consulted on 27/04/2019 
33 https://www.fluvius.be/nl/meer-weten/zonnepanelen/berekening-groenestroomcertificaten 
34 https://www.vlaanderen.be/groenestroomcertificaten-voor-zonnepanelen, consulted on 27/04/2019 

https://www.fluvius.be/nl/thema/zonnepanelen/wat-zijn-groenestroomcertificaten
https://www.vreg.be/nl/begrippenlijst#groene_stroom
https://www.vreg.be/nl/algemene-info-over-steuncertificaten
https://www.fluvius.be/nl/thema/zonnepanelen/heb-ik-recht-op-groenestroomcertificaten
https://www.energiesparen.be/zonnepanelen-met-een-startdatum-van-1-juli-2014-tot-en-met-31-december-2014
https://www.vlaanderen.be/groenestroomcertificaten-voor-zonnepanelen
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Band factor (Bf) based on the first date of commissioning35 

First time of commissioning between First time of commissioning between 

  01-01-13 31-12-13   01-01-14 30-06-14 

Energy produced between Bf Energy produced between Bf 

01-01-13 31-07-13 0,23       

01-08-13 16-02-14 0,28       

17-02-14 31-07-14 0 01-01-14 31-07-14 0,268 

01-08-14 26-03-15 0,0847 01-08-14 26-03-15 0,0394 

27-03-15 22-08-15 0,818 27-03-15 22-08-15 0,753 

23-08-15 31-07-16 0,818 23-08-15 31-07-16 0,753 

01-08-16 02-08-17 0,399 01-08-16 02-08-17 0,304 

03-08-17 31-07-18 0,163 03-08-17 31-07-18 0,0975 

01-08-18 - 0,32 01-08-18 - 0,255 

First time of commissioning between First time of commissioning between 

  01-07-14 31-12-14   01-01-15 30-06-15 

Energy produced between Bf Energy produced between Bf 

            

            

            

01-07-14 26-03-15 0       

27-03-15 22-08-15 0,657 01-01-15 22-08-15 0 

23-08-15 31-07-16 0,621 23-08-15 31-07-16 0,488 

01-08-16 02-08-17 0,162 01-08-16 02-08-17 0,0126 

03-08-17 31-07-18 0 03-08-17 31-07-18 0 

01-08-18 - 0,133 01-08-18 - 0 

Example: 

A solar panel installed on the 25/08/2014 has produced 14.000 kWh for the month of 

08/2016. The applicable band factor is 0,162. The number of GSC granted is 14.000 

* 0,162 / 1000 = 2,268 GSC.  For this month, 2 GSC are granted to the installation 

with a minimal price of 93€ 

 

 

 

 

 
35 https://www.energiesparen.be/groene-energie-en-wkk/professionelen/monitoring-en-evaluatie/startdatum-
na-2013/zonder-brandstofkost/overzicht-bandingfactor-zon, consulted on 27/04/2019 

https://www.energiesparen.be/groene-energie-en-wkk/professionelen/monitoring-en-evaluatie/startdatum-na-2013/zonder-brandstofkost/overzicht-bandingfactor-zon
https://www.energiesparen.be/groene-energie-en-wkk/professionelen/monitoring-en-evaluatie/startdatum-na-2013/zonder-brandstofkost/overzicht-bandingfactor-zon


42 
 

i. Prosumer tax 

After the 15/06/201536, only installations with a capacity > 10 kWc receive GSC. 

The subsidy was converted into a tax called “Prosumententarief”, the principle is almost 

the same than the Walloon prosumer tax. It’s based on the initial and maximal capacity 

of the installation (kVA, similar to kWh) and not a tax on the quantity of electricity 

injected on the grid (like in Wallonia). It’s assimilated to a fixed contribution to the grid 

without direct link to the amount of injected electricity. This system is still in place for 2019 

but will be replaced as soon as digital meters will be in place for owners of solar 

panels37. 

Prosumententax value (€ by kW of kVA) by installation38 

 

Example: 

An installation located in Spiere (a small city close to Mouscron) with a maximal capacity 

of 3 kVA will pay a tax for the year 2016 about 113,03€ * 3 = 339,09€.  

 

  

 

 

 

 

 

 

 
36 https://www.vreg.be/nl/prosumententarief, consulted on 27/04/2019 
37 https://www.vreg.be/nl/begrippenlijst#prosumententarief, consulted on 27/04/2019  
38 https://www.vreg.be/nl/prosumententarief-sector, consulted on 27/04/2019 

Operator
01/07/2015-

31/07/2015 

01.08.2015- 

31/12/2015

01/01/2016-

31/12/2016

01/01/2017-

31/12/2017

01/01/2018-

31/12/2018

01/01/2019-

31/12/2019

Gaselwest 101,63 € 106,32 € 113,03 € 128,15 € 121,46 € 109,24 €

Imea 76,11 € 78,57 € 85,35 € 97,99 € 93,87 € 86,29 €

Imewo 85,08 € 88,44 € 92,89 € 104,88 € 99,61 € 90,15 €

Intergem 82,61 € 85,75 € 80,82 € 93,36 € 87,14 € 77,21 €

Iveka 80,95 € 83,85 € 93,12 € 107,09 € 100,58 € 89,79 €

Iverlek 86,09 € 89,38 € 92,95 € 104,89 € 99,16 € 91,42 €

Gaz sibel 95,78 € 99,06 € 106,94 € 112,71 € 107,67 € 102,49 €

Infrax West 96,18 € 99,76 € 99,74 € 98,69 € 98,98 € 92,83 €

Inter-Energa 96,80 € 99,49 € 95,92 € 89,87 € 91,14 € 85,49 €

Iveg 93,87 € 96,99 € 98,03 € 114,05 € 114,19 € 98,63 €

PBE 94,63 € 97,61 € 93,55 € 96,72 € 94,02 € 92,33 €

https://www.vreg.be/nl/prosumententarief
https://www.vreg.be/nl/begrippenlijst#prosumententarief
https://www.vreg.be/nl/prosumententarief-sector
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e) Situation in Brussels region 

In Brussels region, a system of CV is applied and still stand for 2019. No other system 

has been applied, only the methodology of CV granting has changed. 1 CV represents 

a production of 1 mWh.  

Before the 01/07/2011, the number of CV was granted based on the size of the 

installation39: 

• 7,27 CV / mWh for the first 20 m2  

• 5,45 CV / mWh for the next 40 m2 

• 3,63 CV / mWh for the part bigger than 60 m2 

After, the number of CV was based on the power of the installation.40  

CV granting regime for an installation with a power < 5 kWc 

 

The CV’s are granted for 10 years and have a guarantee price of 65€41. 

The system tends to achieve a pay-back time of 7 years. 

Figure 15 - Average price of CV in Brussels region42 

The average price of CV in Brussels slightly increases, not as the CV in Wallonia 

 

 
39 https://environnement.brussels/thematiques/batiment/quest-ce-que-lenergie-verte/certificats-verts/lancien-
systeme-de-calcul-pour, consulted on 27/04/2019  
40 https://www.brugel.brussels/acces_rapide/energies-renouvelables-11/mecanisme-des-certificats-verts-35, 
consulted on 27/04/2019  
41 https://www.brugel.brussels/acces_rapide/energies-renouvelables-11/vendre-les-certificats-verts-38, 
consulted on 27/04/2019  
42 https://www.brugel.brussels/publication/document/statistiques/2013/fr/observatoire-des-prix-fevrier-a-juin-2013.pdf 

    https://www.brugel.brussels/publication/document/statistiques/2013/fr/observatoire-des-prix-4e-trimestre-2012-janvier-2013.pdf 
    https://www.brugel.brussels/publication/document/statistiques/2018/fr/Oservatoire_des_prix_T3.pdf , consulted on 27/04/2019 
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https://environnement.brussels/thematiques/batiment/quest-ce-que-lenergie-verte/certificats-verts/lancien-systeme-de-calcul-pour
https://environnement.brussels/thematiques/batiment/quest-ce-que-lenergie-verte/certificats-verts/lancien-systeme-de-calcul-pour
https://www.brugel.brussels/acces_rapide/energies-renouvelables-11/mecanisme-des-certificats-verts-35
https://www.brugel.brussels/acces_rapide/energies-renouvelables-11/vendre-les-certificats-verts-38
https://www.brugel.brussels/publication/document/statistiques/2013/fr/observatoire-des-prix-fevrier-a-juin-2013.pdf
https://www.brugel.brussels/publication/document/statistiques/2013/fr/observatoire-des-prix-4e-trimestre-2012-janvier-2013.pdf
https://www.brugel.brussels/publication/document/statistiques/2018/fr/Oservatoire_des_prix_T3.pdf
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2. Literature review 

Real option is subject to wide area of research, mostly in Strategy and in Energy 

sector. This method is adapted to deal with the uncertainty involved on energetic 

investment projects due to the specificity of the energy sector (regulation, monopoly, 

different equilibrium mechanism to achieve a demand equals to the offer) [11].  

K.-T Kim et al. [12, pp. 335-347] have summarized a large part of the literature (see 

next table) as G. Locatelli [13, pp. 114-131] in a more extensive way. 

 

Most of the researchers used analytical solution or binomial lattice (binomial tree) to 

solve the problem involved in the real option valuation. It’s the case of E. Agliardi et al 

[14, pp. 1-9] with an analytical valuation for a building renovation, Kyung-Taek et al 

[12, pp. 335-347] with a lattice model for a R&D model in wind power, S-E Fleten et al 

[15, pp. 498-506] for a comparison of ROV and NPV in green electricity investment 

timing. An analytic solution is preferable than a simulation model but when it becomes 

too complex, the numerical or decision tree become unsolvable (more than 2 stochastic 

process) with the available techniques.  

Monte Carlo simulation instead allows to have more flexibility. It can handle multiple 

uncertainty and consider their complex interaction. Some assumptions can also be easily 

changed, whereas it’s not possible with analytical solution because it’s involved to find a 

new specific solution to the problem. Normal Monte Carlo requires in the contrary many 

simulations (more than 10.000 on average) to converge to a stable solution and of course 

a bigger time of computation. To deal with this weak point, Longstaff & Schwartz [16, 

pp. 113-147] developed the Least-Square Monte-Carlo to initially value American 

Option. It was later used for Real Option Valuation, which are essentially American kind 

option, to approximate the value of the investment option through the time. This model 

can manage multiple variables and gains in computation time, because it requires less 

simulations to converge to a simulation. It has been used by L. Tian et al [17, pp. 354-

362] to solve a 4 GBM model on photovoltaic power generation with carbon market 

linkage in China, by L. Zhu & Y. Fan [18, pp. 4320-4333] for a carbon capture and 

storage investment or by L. Zhu [19, pp. 585-593] in Nuclear energy project. 
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Regarding the valuation of Real option on photovoltaic investment, the main 

contributions come from Eduardo Alejandro Martinez-Cesena et al. [20, pp. 2087-2094] 

who analyze a defer option in 2010 in UK with a decreasing stochastic investment cost 

due to the technological progress. The option was paying off in 2015 to wait the 

availability of a new technology (organic thin film) that allow to reduce the cost and 

improving the energy production. Again, on the investment cost side, C. Jeon & J. Shin 

[21, pp. 447-457] used a stochastic learning curve with 2 factors to study the influence 

at long term of technological changes in solar panel technology. The conclusion is that the 

reduction of investment will continue in the coming years (to 2030) and that the subsidy 

of the governments plays a key role in this evolution. Another contribution comes from 

M.M. Zhang et al. [22, pp. 213-226] where an LSM model was used to value a solar 

panel project in China with variables on the electricity price, investment cost, benefits 

generated by the sold of CO2 reduction quota and corporate tax policy. The results tend 

to show that the low electricity price at this time (2010) and the insufficiency of subsidy 

lead to a non-optimal investment, those variables should play a significative impact in 

the value of the option. Those researches insist on the influence of main variables which 

are investment cost, electricity price and subsidy policy. It’s why the Belgian context of 

solar panel is so interesting because the uncertainty of the subsidy legislation varies a lot 

between the regions and through the time, in a context of growing electricity cost due to 

nuclear energy dependence and the reduction of investment cost that occurred with the 

technological progress. 
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a) Variables and initial hypothesis of the model 
 

Multiple kinds of model will now be considered: 

1° Analytical model with 1 GBM 

2° Analytical model with 2 GBM, based on McDonald & Siegel solution [23]  

3° Least-Square Monte Carlo model applied to the Belgian context 

 

The following variables will be considered depending on the complexity of the model 

 

General information and location of the installation: 

The investment project considered will be located at Mouscron for the Walloon region which is 

a city at the corner of Wallonia, Flanders and France. For the Flemish region, it’s located at 

Spiere, a city next to Mouscron (same electricity production and solar irradiance). It’s a 

straightforward way to compare the 2 different situations. For the Brussels region, the same 

irradiance will be assumed to compare the results.43 

The model of solar panel will be a monocrystalline panel (technical characteristic will be 

described later). The life of the panel is 20 years (the average life of a solar panel is comprised 

between 20 and 25 years, 20 years is the life of the guarantee) and the option maturity of 10 

years to be in line with the vision of a householder. The installation will have a power of 3 kWc, 

a size adapted to the consumption of the common householder in Belgium (3,5 kWh) in order to 

have the largest auto-consumption factor. No taxes are applied on the selling of CV or 

electricity.44 The number of CV granted will based on the maximal value presented on the 

different tables above.  

The kind of real option analyzed will exclusively be a right to wait, other kinds are not relevant 

as an incremental option because a solar panel can be installed in a few days. 

 

Electricity price variable (E): 

Based on the rapport of CREG (Federal regulator of energy) [24], the common householder has 

a consumption of 3.500 kWh per year (DC 2v, CREG methodology) [24, p. 12].  For different 

reasons, electricity price is different between the region. [24, p. 126]. Tax and energy policies 

depend of the regions and the price itself is affected by multiple components. The next figure 

represents the evolution of the components impact. In 2011 and 2016, distribution costs increase 

a lot. VAT (in yellow) decreased from 21% to 6% in 04/2014 to be increased at the previous 

level (21%) in 08/2015. On the Belgium level, price has risen about 61,59% between 2007 

and 2018, with an increase of 3,33% for the year 2018.  

 

 
43 The difference with the real life is assumed to be small. 
44 https://www.cwape.be/?dir=3.4.01, consulted on 27/04/2019 

https://www.cwape.be/?dir=3.4.01
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Figure 16 – Price evolution with the components impact for one of the main suppliers  

(EDF Luminus) 

The price of electricity increased about 62% in 12 years in Belgium, mainly due to the growing distribution costs 

 
 

 

The following table provides information’s about the region situation at the end of 2018.  

Region 
2007 

(January) 
2018 

(December) 
Variation % 

% annual 
(12 years)45 

Flanders 142 €/MWh 291 €/MWh 148,31 €/MWh 104,93% 6,16% 

Brussels 166 €/MWh 222 €/MWh 55,83 €/MWh 33,73% 2,45% 

Wallonia 171 €/MWh 263 €/MWh 91,57 €/MWh 53,80% 3,65% 
 

 

 

 

 

 

 

 

45 Average increase calculated as follow: √
𝑉𝑎𝑙𝑢𝑒2018

𝑉𝑎𝑙𝑢𝑒2007

(2018−2007)+1
− 1 
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Figure 17 – Evolution of electricity price (by MWh) for the 3 regions 

 

 

Based on those data’s, some hypothesis will be made about the variable’s values: 

Initial price:  

220, 260 and 300 (€/ MWh) which represent the starting situation of the 3 regions. 

Trend of the electricity price: 

2%, 3%, 4% and 7% which represent the historical trend, the price is not assumed to 

decrease in the coming years due to the CV debt in Wallonia or the climate transition 

policy. 

Volatility of the electricity price: 

Using the data on the figure of EDF Luminus price, the standard error of the price changes 

gives a value of 0,1865 which will be round to 0,2 for simplicity. 

No mean-reverting process is assumed on the total price, the Belgium context influences more the 

final price than the commodity variation. Those hypotheses are lower than the forecasting of the 

CWAPE [10, p. 93], comparisons will be made if necessary. 
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Electricity produced variable (Q): 

Based on data from the European Union research database46, a mean-reverting process will be 

estimated because the data are very seasonal. This database gives the monthly irradiation (in 

kWh/m²) which represents the optimal condition of a solar panel: south-east to -south-west 

orientation, gradient at 36°. The model will consider a solar panel installation in the optimal 

conditions of production.47 

 

Figure 18 - Monthly solar irradiance 

The monthly irradiance in Belgium varies from 30 kWh/m² in the winter to 190 in the summer.  

The mean on a year is about 107 

 

1 solar panel48 has a size of 0,942 x 1,640, it corresponds to 1,54 m² per panel. The conversion 

factor of solar energy into electricity of the panel is 20%. Each panel has a kWc of 1,54*20% 

= 0,308. The total capacity of the installation must be 3 kWc, so 9,74 (3/0,308) solar panels 

are necessary, this amount is rounded to 10. The system loss is assumed to be 14%49. The total 

installation produces 0,860 kWh for each kWc in optimal conditions. The values of the database 

will be so multiplied by 0,86*3 (kWh*kWc). A negative trend (Loss_factor) of -0,5%/year will 

be applied to represent the loss of production due to the age of the installation50. 

 
46 http://re.jrc.ec.europa.eu/pvgis/ 
47 (Located in Mouscron; latitude: 50,724°; Longitude: 3,314°; Radiation database: PVGIS-CMSAF, data extracted 

on 17/05/2019) 

48 Technical characteristic available at https://forevergreen-products.co.uk/product/290w-all-black-monocrystalline-b3/ 
49 As recommended on the database website 
50 Same value used that the CWAPE methodology for Qualiwatt 
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 𝑄𝑡 = (100% − 𝐿𝑜𝑠𝑠𝑓𝑎𝑐𝑡𝑜𝑟) ∗ (𝑄𝑡−1 + 𝑑𝑄)  (24) 

 

The mean-reverting process is set as: 

 𝑑𝑄 = 𝜂̅ ∗ (𝑄̅ − 𝑄) ∗ 𝑑𝑡 + 𝜎 ∗ 𝑑𝑊𝑡  (25) 

 

The coefficients will be valued through an analytical solution of Maximum likelihood estimation 

of the process51: 

 

𝑆𝑋 = ∑𝑆𝑖−1

𝑛

𝑖=1

 

𝑆𝑌 = ∑𝑆𝑖

𝑛

𝑖=1

 

𝑆𝑋𝑋 = ∑𝑆𝑖−1
2

𝑛

𝑖=1

 

𝑆𝑋𝑌 = ∑𝑆𝑖−1 ∗ 𝑆𝑖

𝑛

𝑖=1

 

𝑆𝑌𝑌 = ∑𝑆𝑖
2

𝑛

𝑖=1

 

 
Where S represent the monthly average irradiance 

(26) 

 

Parameters of the mean-reverting process are given by: 

 

𝑄̅ =
(𝑆𝑌 − 𝑒−𝜆∗𝛿 ∗ 𝑆𝑋)

𝑛 ∗ (1 − 𝑒−𝜆∗𝛿)
 

 

𝜂̅ =  −
1

𝛿
∗ ln

(𝑆𝑋𝑌−𝑄̅∗𝑆𝑋−𝑄̅∗𝑆𝑌+𝑛∗𝑄̅2)

(𝑆𝑋𝑋−2∗𝑄̅∗𝑆𝑋+𝑛∗𝑄̅2)
  

 

𝛼 = 𝑒−𝜆∗𝛿 
 

𝜎̂2 =
1

𝑛
∗ (𝑆𝑌𝑌 − 2 ∗ 𝛼 ∗ 𝑆𝑋𝑌 + 𝛼2 ∗ 𝑆𝑋𝑋 − 2 ∗ 𝑄̅ ∗ (1 − 𝛼)

∗ (𝑆𝑌 − 𝛼 ∗ 𝑆𝑋) + 𝑛 ∗ 𝑄̅2 ∗ (1 − 𝛼)2) 
 

𝜎2 = 𝜎̂2 ∗
2 ∗ 𝜆

1 − 𝛼2
  

 

Where 𝛿 = 1/12 as the data are in the monthly format 

(27) 

 

 
51 A guide to the coefficient estimation can be found at: https://www.statisticshowto.datasciencecentral.com/wp-

content/uploads/2016/01/Calibrating-the-Ornstein.pdf , consulted on 19/05/2019 

https://www.statisticshowto.datasciencecentral.com/wp-content/uploads/2016/01/Calibrating-the-Ornstein.pdf
https://www.statisticshowto.datasciencecentral.com/wp-content/uploads/2016/01/Calibrating-the-Ornstein.pdf
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Coefficients are equal to: 

• 𝑄̅ = 104,96 

• 𝜂̅ =  3,1033 

• 𝜎 =  126,2737 

The initial value of Q will be fixed at the mean value (104,96) to avoid timing strategy.  

 

Investment cost (I): 

Using the data of the CWAPE to compute Qualiwatt subsidy, the coefficient “I” has a trend about 

-11,5%/year and a volatility of 0.075, it will also be used for the model. The price of a solar 

panel is supposed to decrease in the time based on the future technology innovation.52 The initial 

investment cost will be fixed at 6.500€ based on an IKEA simulation, provided here as an 

example53. 

 

The cost of the inverter (only one for the installation) is assumed to be stable at 250€ (CWAPE 

data). It happens every 10 years, one time by installation for a life of 20 years. By simplicity, 

it will be actualized in the investment cost based on the following formula: 

 
250

(1 + 𝑟)10
 (28) 

 

Maintenance cost: 

It will be approximated to be 0,75% of the initial investment cost as in the CWAPE methodology. 

 

 

 
52 Some new technologies can be found on this business press article: https://www.bfmtv.com/economie/cette-
innovation-rend-les-panneaux-solaires-plus-legers-et-bon-marche-1632290.html  
53 Other cost simulations have been conducted and give the same value. 

https://www.bfmtv.com/economie/cette-innovation-rend-les-panneaux-solaires-plus-legers-et-bon-marche-1632290.html
https://www.bfmtv.com/economie/cette-innovation-rend-les-panneaux-solaires-plus-legers-et-bon-marche-1632290.html
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Walloon Prosumer Tax (PRO_WL): 

The value will be fixed at 78€/kWe (ORES Mouscron price for the planned tax of 2020). Auto-

consumption is assumed to be equal to 37,76% of the electricity production without smart meter, 

for simplicity the value will be based on the total kWc of the installation. 

 

Flemish Prosumer Tax (PRO_FL): 

The value will be fixed at 110€ (2019 value for Gaselwest). The value will be based on the 

total kWc of the installation. 

 

Brussels Certificat Vert (CV) 

Using historical price of CV at Brussels, the initial price will be fixed at 96€/CV (value for the 

end of 2018), with a small trend of 0,3%/year and a volatility of 0,03. Price will be constrained 

to the range [65€ ; 100€] as explained previously. 1CV is granted by 1.000 kWh. 

 

Interest rate (r) 

As the probable investor is expected to be a household owner, CAPM theory cannot be applied 

to determine the capital cost. Instead, the interest rate of the savings account (close to 0%) or 

the interest rate on a green loan (2-3%) will be applied. 

Multiple value will be tested: 0,5%; 1%; 3% and 5% 

 

For the risk neutral process (model 1 and 2): 

𝛿 = 𝜇 − 𝛼 = 𝑟 + 
(𝑟𝑀 − 𝑟)

𝜎𝑀
∗ 𝜎 ∗ 𝜌𝐸;𝑀 − 𝛼 

• 𝛼 is the trend of the process 

• 𝜎 is the volatility of the process 

• 𝑟𝑀 is the expected return on the market 
Eurostoxx 50 is used as the market of reference because the index is more diversified 
than the BEL20 index. 
Using function “Return.calculate”54 on the monthly data of yahoo finance, the median 
return is about 0,3928%/month on the period 01-01-2000/31-12-2018 

• 𝜎𝑀 is also valued on the same basis and as a value of 0,018/year 

• The correlation term is fixed at: 

▪ +0.175 between CV and M, based on quarterly data (2011-Q2/2018-Q4) 

▪ -0.04 between E and M (approximated on yearly data of Flemish price of 
electricity and yearly data of Eurostoxx50). 

▪ +0.32 between I and M, based on quarterly data (2014-Q2/2016-Q2) 
 

 
54 https://www.rdocumentation.org/packages/PerformanceAnalytics/versions/1.5.2/topics/Return.calculate , 
consulted on 17/05/20119 

https://www.rdocumentation.org/packages/PerformanceAnalytics/versions/1.5.2/topics/Return.calculate
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To keep the model simple as possible, interest rate and volatility will be kept stable even it’s not 

the case in real life. The difference is not supposed to influence the results as multiple values will 

be tested. 

Some ranges are used to avoid that the stochastic process provides abnormal values. For 

electricity price, the range is [100€ ; 700€] which is equivalent to a price lower than the situation 

in 2007 and an increase between 200 and 300% from the initial situation. For the solar 

irradiance, the range is [20 ; 200] which correspond to the historical minimum and maximum 

observed. For the investment cost, the range is [500€ ; 7000€] which corresponds to a minimal 

price per panel of 50€ and an expensive installation on the 01/01/2019. 

b) Summary of the variable: 
 

General information:   

Life of the installation (guarantee) 20 years  

Maturity of the option 10 years  

Power of the installation 3 kWc  

Electricity price variable (E):  range  
[100€ ; 700€] 

Initial value: 220, 260 and 300  

Trend: 2%, 3%, 4% and 7%/year  

Volatility: 0,2/year  

Electricity produced variable (Q):  range  
[20 ; 200] 

Initial value 104,96  

𝑄̅ 104,96  

𝜂̅ 3,1033  

𝜎̂ 126,2737  

Loss factor 0,5%/year  

Investment cost (I):  range  
[500€ ; 7000€] 

Initial value: 6.500,00€  

Trend: -11,5%/year  

Volatility: 0,075/year  

Inverter cost:  250

(1 + 𝑟)10
 

Summed with 
initial I 

Maintenance cost: 0,75% * I  

Walloon Prosumer Tax (PRO_WL):   

Initial value: 78€ /kWe Valued as  
(1-37,76%)  
of the kWc 

Trend: 1%/year  

Auto consumption factor:  37,76%  

Flemish Prosumer Tax (PRO_FL):   

Initial value: 110€ /kW of kVA Valued as initial 
kWc 

Trend: 1%/year  

Brussels Certificat Vert (CV):   

Initial value: 96€/CV  

Trend: 0,3%/year  

Volatility: 0,03/year range  



54 
 

[65€ ; 100€] 

CV number 3 CV/ 1.000 kWh  

Interest rate (r) 0,5%; 1%; 3% and 5%/year  

3. Model 1: Perpetual and basic option with 1 GBM 
 

 The first model is based on the methodology developed at the point 4 of the theorical 

part. One geometric Brownian motion (GBM) will be assumed on the electricity price in an exotic 

way because it will be multiplied by a constant and average production level. The project will 

yield a perpetual profit of G when the investment is achieved. No maintenance cost as 

correlation between the variables is assumed to keep the model simple. 

 

Model 1: Solution with a simple model of 1 GBM  

Definition of the variables 

𝑃𝑅̅̅ ̅̅  : assume an exogenous and average production of energy which is constant 

E: the price of the electricity following a Brownian motion 

Process equation of E (Geometric Brownian Motion): 

 𝑑 𝐸 =  𝛼𝐸 ∗ 𝐸 ∗ 𝑑𝑡 +  𝜎𝐸 ∗  𝐸 ∗  𝑑𝑊𝑡 (29) 

 

G: gains generated from the production of energy 

 G =  E ∗  𝑃𝑅̅̅ ̅̅  (30) 
 

I: the fixed cost of the investment, which represents the sunk cost as the solar panels lose 

all their value while they are installed on a roof. 

F: the global value of the project  

No correlation is assumed between E and I 

The goal is to find an optimal level 𝐺∗ that must reach the cash-flows (G) to provide the 

highest profitability based on the actual information and present situation. 

 

Gains from the production of energy can be set equal to: 

 𝑑 𝐺 =  𝑑 𝐸 ∗ 𝑃𝑅̅̅ ̅̅  (31) 
 Or 

 𝑑 𝐺 =  𝛼𝐸 ∗ 𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗ 𝑑𝑡 +  𝜎𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊𝑡 (32) 

 

Another to define G is by using the integral form [8, p. 150], it represents the ongoing present 

value at time 0 of an infinite flow which consists in E*𝑃𝑅̅̅ ̅̅ : 
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 𝐺0 = ∫ 𝛿 ∗ 𝐺0

∞

0

∗ 𝑒(𝜇−𝛿)∗𝑡 ∗ 𝑒−𝑟∗𝑡𝑑𝑡  (33) 

Variance of d G: 

 
(𝑑 𝐺)2 = 𝛼𝐸

2 ∗ 𝐸2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗ 𝑑𝑡2 +  𝜎𝐸
2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗ 𝐸2 ∗  𝑑𝑊𝑡

2 + 2
∗ 𝛼𝐸 ∗ 𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗   𝜎𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊𝑡 ∗ 𝑑𝑡 

(34) 

 Simplifying, 

 
(𝑑 𝐺)2 =  𝜎𝐸

2 ∗ 𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗  𝑑𝑊𝑡
2 + 2 ∗ 𝛼𝐸 ∗ 𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗   𝜎𝐸 ∗

 𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊𝑡 ∗ 𝑑𝑡 
(35) 

 

It can be shown that the stochastic increment (𝑑𝑊𝑡) is equal to the root of dt 

 𝑑𝑊𝑡 = √𝑑𝑡 (36) 

 

 
(𝑑 𝐺)2 =  𝜎𝐸

2 ∗ 𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗  𝑑𝑡 + 2 ∗ 𝛼𝐸 ∗ 𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗  𝜎𝐸 ∗
 𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊𝑡 ∗ 𝑑𝑡 

(37) 

By relation with equation 36: 

 
(𝑑 𝐺)2 =  𝜎𝐸

2 ∗ 𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗  𝑑𝑡 + 2 ∗ 𝛼𝐸 ∗ 𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗  𝜎𝐸 ∗

 𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗ 𝑑𝑡
3

2 
(38) 

 

Again the term 𝑑𝑡
3

2 turn faster to 0 than other members and can be cancelled: 

 (𝑑 𝐺)2 =  𝜎𝐸
2 ∗ 𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗  𝑑𝑡 (39) 

 

Developing the components of differential equation of F following Ito’s lemma [8, pp. 79-

82] 

 𝑑 𝐹(𝐺, 𝑡) =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
𝑑𝐺 +

1

2
∗

𝜕2𝐹

𝜕2𝐺
𝑑𝐺2 + 

𝜕2𝐹

𝜕2𝑡
𝑑𝑡2 +

𝜕2𝐹

𝜕𝐺𝜕𝑡
𝑑𝐺 𝑑𝑡 + ⋯ (40) 

 

The last 2 terms can be neglected because 𝑑𝑡2 𝑎𝑛𝑑 𝑑𝐺 𝑑𝑡 turn faster to 0 than others. 

 𝑑 𝐹(𝐺, 𝑡) =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
𝑑𝐺 +

1

2
∗

𝜕2𝐹

𝜕2𝐺
𝑑𝐺2 (41) 

Substituting 𝑑𝐺2 by its variance, 

 𝑑 𝐹(𝐺, 𝑡) =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
𝑑𝐺 +

1

2
∗

𝜕2𝐹

𝜕2𝐺
∗ 𝑣𝑎𝑟(𝑑𝐺) (42) 
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dG is given by equation 32 and the variance by equation 39 

 

𝑑 𝐹(𝐺, 𝑡) =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
∗ (𝛼𝐸 ∗ 𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗ 𝑑𝑡 +  𝜎𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊𝑡)

+
1

2
∗

𝜕2𝐹

𝜕2𝐺
∗ 𝑣𝑎𝑟(𝛼𝐸 ∗ 𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗ 𝑑𝑡 +  𝜎𝐸

∗  𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊𝑡) 

(43) 

 

𝑑 𝐹(𝐺, 𝑡) =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
∗ (𝛼𝐸 ∗ 𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗ 𝑑𝑡 +  𝜎𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊𝑡) 

  +
1

2
∗

𝜕2𝐹

𝜕2𝐺
∗  𝜎𝐸

2 ∗ 𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗  𝑑𝑡  

(44) 

Regrouping terms implies, 

 
𝑑 𝐹(𝐺, 𝑡) = [

𝜕𝐹

𝜕𝑡
+ 𝛼𝐸 ∗ 𝐸 ∗  𝑃𝑅̅̅ ̅̅ ∗  

𝜕𝐹

𝜕𝐺
+

1

2
∗

𝜕2𝐹

𝜕2𝐺
∗  𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗ 𝐸2 ] ∗ 𝑑𝑡

+ 
𝜕𝐹

𝜕𝐺
∗  𝜎𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊𝑡 

(45) 

 

The first member into brackets represent the determinist part and the second, the 

stochastic ones. 

 

Risk-free portfolio and arbitrage conditions [7, p. 41] 

To construct a risk-free portfolio, we need a position in the project (F) and a short position 

in the underlying asset (G), which consists in a hedge of the investment. ∆1 is the size of 

the position to obtain a perfect hedge with G on the underlying F. 

 𝑃𝑜𝑟𝑡 = 𝐹 − ∆1𝐺 (46) 

And in the increment format, 

 𝑑 𝑃𝑜𝑟𝑡 = 𝑑 𝐹 − ∆1 𝑑 𝐺 (47) 

 Developing dF: 

 𝑑 𝑃𝑜𝑟𝑡 =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
𝑑𝐺 + 

1

2
∗

𝜕2𝐹

𝜕2𝐺
𝑑𝐺2 − ∆1 𝑑 𝐺  (48) 

Replacing 𝑑𝐺2 by its variance, 

 𝑑 𝑃𝑜𝑟𝑡 =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
𝑑𝐺 + 

1

2
∗

𝜕2𝐹

𝜕2𝐺
∗ 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗  𝑑𝑡 − ∆1 𝑑 𝐺 (49) 

Regrouping terms with dG in common: 

 𝑑 𝑃𝑜𝑟𝑡 =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 + 

1

2
∗

𝜕2𝐹

𝜕2𝐺
∗ 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗  𝑑𝑡 + (
𝜕𝐹

𝜕𝐺
− ∆1) ∗  𝑑 𝐺 (50) 
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d G represents the risk driver, it must set equal to 0 to be risk free: 

 (
𝜕𝐹

𝜕𝐺
− ∆1) ∗  𝑑 𝐺 = 0 (51) 

 

To obtain equality in the equation, the value of ∆1 must be equal to: 

 ∆1= 
𝜕𝐹

𝜕𝐺
 (52) 

 

 𝑑 𝑃𝑜𝑟𝑡 =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 + 

1

2
∗

𝜕2𝐹

𝜕2𝐺
∗ 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗  𝑑𝑡 + (
𝜕𝐹

𝜕𝐺
− ∆1) ∗  𝑑 𝐺 (53) 

 

To obtain a solution, the insertion of the term 𝛿𝐸 is need. It’s the equivalent to a 

dividend payoff55 to maintain the option alive (for more details see 4.b) of the 

theorical part). It can be computed as follow [8, p. 155] 

 𝛿𝐸 = 𝜇𝐸 − 𝛼𝐸 = 𝑟 +  𝜙 ∗ 𝜎 ∗ 𝜌𝐸;𝑀 − 𝛼𝐸 (54) 
 

 
𝑑 𝑃𝑜𝑟𝑡 =  

𝜕𝐹

𝜕𝑡
𝑑𝑡 + 

1

2
∗

𝜕2𝐹

𝜕2𝐺
∗ 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗  𝑑𝑡 +

 (
𝜕𝐹

𝜕𝐺
− ∆1) ∗  𝑑 𝐺 + 𝛿𝐸 ∗ ∆1 ∗ 𝐸 ∗ 𝑃𝑅̅̅ ̅̅ ∗ 𝑑𝑡 

(55) 

 

Substituting the value of ∆1 into the equation 55: 

 𝑑 𝑃𝑜𝑟𝑡 =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 + 

1

2
∗ 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗
𝜕2𝐹

𝜕2𝐺
∗  𝑑𝑡 + 𝛿𝐸 ∗ 𝐸 ∗ 𝑃𝑅̅̅ ̅̅ ∗

𝜕𝐹

𝜕𝐺
∗ 𝑑𝑡 (56) 

 

 Risk-free portfolio 

This portfolio must give a risk-free return (r) at each time increment dt: 

 𝑑 𝑃𝑜𝑟𝑡 = 𝑟 ∗ 𝑃𝑜𝑟𝑡 ∗ 𝑑𝑡 (57) 
Using Port with the equation 46, 

 
𝜕𝐹

𝜕𝑡
𝑑𝑡 + 

1

2
∗ 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗
𝜕2𝐹

𝜕2𝐺
∗  𝑑𝑡 + 𝛿𝐸 ∗ 𝐸 ∗  𝑃𝑅̅̅ ̅̅ ∗

𝜕𝐹

𝜕𝐺
∗

𝑑𝑡 = 𝑟 ∗ (𝐹 − ∆1𝐺) ∗ 𝑑𝑡 
(58) 

 

Bellman’s equation (optimality condition): 

 
𝜕𝐹

𝜕𝑡
𝑑𝑡 + 

1

2
∗ 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗
𝜕2𝐹

𝜕2𝐺
∗  𝑑𝑡 + 𝛿𝐸 ∗ 𝐸 ∗  𝑃𝑅̅̅ ̅̅ ∗

𝜕𝐹

𝜕𝐺
∗

𝑑𝑡 −  𝑟 ∗ (𝐹 − ∆1𝐺) ∗ 𝑑𝑡 = 0 
(59) 

 

 
55 Even if the underlying doesn’t provide any dividends. 



58 
 

Simplifying the dt: 

 
𝜕𝐹

𝜕𝑡
+ 

1

2
∗ 𝜎𝐸

2 ∗ 𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗
𝜕2𝐹

𝜕2𝐺
 + 𝛿𝐸 ∗ 𝐸 ∗ 𝑃𝑅̅̅ ̅̅ ∗

𝜕𝐹

𝜕𝐺
−  𝑟 ∗

(𝐹 − ∆1𝐺) = 0 
(60) 

 

Substituting ∆1 and G by their values (equation 52 and 30): 

 

𝜕𝐹

𝜕𝑡
+ 

1

2
∗ 𝜎𝐸

2 ∗ 𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗
𝜕2𝐹

𝜕2𝐺
 + 𝛿𝐸 ∗ 𝐸 ∗ 𝑃𝑅̅̅ ̅̅ ∗

𝜕𝐹

𝜕𝐺
−  𝑟 ∗

(𝐹 − 
𝜕𝐹

𝜕𝐺
∗  𝐸 ∗ 𝑃𝑅̅̅ ̅̅ ) = 0 

(61) 

Regrouping terms, 

 

𝜕𝐹

𝜕𝑡
+ (

1

2
∗ 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗ 𝐸2 ∗
𝜕2𝐹

𝜕2𝐺
) 

+ ((𝑟 − 𝛿𝐸) ∗  𝐸 ∗ 𝑃𝑅̅̅ ̅̅ ∗  
𝜕𝐹

𝜕𝐺
) −  𝑟 ∗ 𝐹 = 0 

(62) 

Converting 
𝜕2𝐹

𝜕2𝐺
 into F’’ and 

𝜕𝐹

𝜕𝐺
 into F’ 

 

𝜕𝐹

𝜕𝑡
+ (

1

2
∗ 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗ 𝐸2) ∗ 𝐹′′ + ((𝑟 − 𝛿𝐸) ∗  𝐸 ∗  𝑃𝑅̅̅ ̅̅ ) ∗ 𝐹′ 

−  𝑟 ∗ 𝐹 = 0 

(63) 

 

The term with “t” is neglected to give a perpetual option: 

 (
1

2
∗ 𝜎𝐸

2 ∗ 𝑃𝑅̅̅ ̅̅ 2 ∗ 𝐸2) ∗ 𝐹′′ + ((𝑟 − 𝛿𝐸) ∗  𝐸 ∗  𝑃𝑅̅̅ ̅̅ ) ∗ 𝐹′ −  𝑟 ∗ 𝐹 = 0 (64) 

As 𝐸 ∗ 𝑃𝑅̅̅ ̅̅  is equal to G, 

 (
1

2
∗ 𝜎𝐸

2 ∗ 𝐺2) ∗ 𝐹′′ + ((𝑟 − 𝛿𝐸) ∗  𝐺) ∗ 𝐹′ −  𝑟 ∗ 𝐹 = 0 (65) 

 

 

Solution to the Bellman’s equation: 

We try a general solution for a differential equation with geometric Brownian motion 

as explained in the theorical part: 

 𝐹 =  𝐴 ∗ 𝐺𝛽 (66) 
 

Applying this function, it gives: 

 
(
1

2
∗ 𝜎𝐸

2 ∗  𝐺2) ∗ (𝐴 ∗ 𝐺𝛽)
′′

+ ((𝑟 − 𝛿𝐸) ∗  𝐺) ∗ (𝐴 ∗ 𝐺𝛽)′ −  𝑟

∗ (𝐴 ∗ 𝐺𝛽) = 0 

(67) 

Taking the derivatives of the solution, 
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(
1

2
∗ 𝜎𝐸

2 ∗  𝐺2) ∗ [𝛽 ∗ (𝛽 − 1) ∗ (𝐴 ∗ 𝐺𝛽−2)] + ((𝑟 − 𝛿𝐸) ∗  𝐺)

∗ [𝛽 ∗ (𝐴 ∗ 𝐺𝛽−1)] −  𝑟 ∗ (𝐴 ∗ 𝐺𝛽) = 0 

(68) 

 

 

Simplifying with power of G: 

 
(
1

2
∗ 𝜎𝐸

2) ∗ [𝛽 ∗ (𝛽 − 1) ∗ (𝐴 ∗ 𝐺𝛽)] + (𝑟 − 𝛿𝐸)

∗ [𝛽 ∗ (𝐴 ∗ 𝐺𝛽)] −  𝑟 ∗ (𝐴 ∗ 𝐺𝛽) = 0 

(69) 

 

Dividing by 𝐴 ∗ 𝐺𝛽 : 

 (
1

2
∗ 𝜎𝐸

2 ∗ 𝛽 ∗ (𝛽 − 1)) + ((𝑟 − 𝛿𝐸) ∗ 𝛽) −  𝑟 = 0 (70) 

Regrouping terms, 

 (
1

2
∗ 𝜎𝐸

2 ∗ (𝛽2 − 𝛽)) + ((𝑟 − 𝛿𝐸) ∗ 𝛽) −  𝑟 = 0 (71) 

 

Dividing by 𝜎𝐸
2 and again regrouping terms: 

 0.5 ∗ 𝛽2 + (
(𝑟 − 𝛿𝐸)

𝜎𝐸
2 − 0.5) ∗ 𝛽 − 

𝑟

𝜎𝐸
2 = 0 (72) 

 

 Roots and solution of the equation: 

To find the roots of 𝛽, we apply the formula: 

 

𝛽 = 
−𝑏 ± √𝑏2 − 4 ∗ 𝑎 ∗ 𝑐

2 ∗ 𝑎
 

 

𝑎 = 0.5  
 

b = (
(𝑟−𝛿𝐸)

𝜎𝐸
2 − 0.5) 

 

𝑐 = − 
𝑟

𝜎𝐸
2 

(73) 

 

We obtain 2 roots: 

 

𝛽1 = 

− (
(𝑟 − 𝛿𝐸)

𝜎𝐸
2 − 0.5) + √((

(𝑟 − 𝛿𝐸)

𝜎𝐸
2 − 0.5))

2

− 4 ∗ 0.5 ∗ − 
𝑟
𝜎𝐸

2

2 ∗ 0.5
 

(74) 
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 𝛽1 = −(
(𝑟 − 𝛿𝐸)

𝜎𝐸
2 − 0.5) + √((

(𝑟 − 𝛿𝐸)

𝜎𝐸
2 − 0.5))

2

− 4 ∗ 0.5 ∗ − 
𝑟

𝜎𝐸
2 (75) 

  

 

 And 

 𝛽2 = − (
(𝑟 − 𝛿𝐸)

𝜎𝐸
2 − 0.5) − √((

(𝑟 − 𝛿𝐸)

𝜎𝐸
2 − 0.5))

2

− 4 ∗ 0.5 ∗ − 
𝑟

𝜎𝐸
2 (76) 

 

The resultant solution of this process gives: 

 𝐹 = 𝐴1 ∗ 𝐺𝛽1 + 𝐴2 ∗ 𝐺𝛽2 (77) 

 

First option: Call on the benefit part of the project 

The goal is to invest, it means taken a long position in the project, this kind of option 

consists in a call. For this option, only the first member is positive due to the boundary 

conditions (summary of those boundaries is provided on the next table), the second 

member is on its side equal to 0. 

Boundary condition Call 

1° F (0) = 0 

2° F (G*) = G* - I 

3° F’(G*) = 1 

Results 
𝐴2 = 𝛽2 = 0 

 
Only keep the positive root 

 

Solution for the first member: 

 𝐴1(𝐺
∗)𝛽1 = 𝐺∗ − 𝐼 (78) 

 

 

𝐴1 = 
𝐺∗ − 𝐼

(𝐺∗)𝛽1
 

 

𝛽1 = 0.5 − (
(𝑟 − 𝛿𝐸)

𝜎𝐸
2 ) + √(

𝑟

𝜎𝐸
2
− 0.5)

2

+ 
2 ∗ 𝑟

𝜎𝐸
2

 

 

𝐴2 = 0 

(79) 
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Optimal level of G where X is the strike of the option: 

 G∗  =  
𝛽1 

𝛽1 − 1
 ∗  I  (80) 

When G reaches this value (trigger level), it will be optimal to invest in the project by 

paying an investment cost of I. 

One specificity must be added now because the project is a series of infinite flow, the 

value of G at time t [8, p. 144] can be rewritten as: 

 𝐺𝑡 =   ε ∫ 𝐸𝑠 ∗ 𝑃𝑅̅̅ ̅̅

∞

𝑡

∗ 𝑒−𝑟∗(𝑠−𝑡)𝑑𝑠 =
(𝐸𝑡 ∗ 𝑃𝑅̅̅ ̅̅ )

𝑟 − 𝛼𝐸
 (81) 

  

This formula is different of G at time 0 as the option value is dynamic. The solution just 

become [8, p. 145]: 

 𝐺∗ = (𝐸 ∗ 𝑃𝑅̅̅ ̅̅ )∗  =  (𝑟 +
1

2
∗ 𝜎𝐸

2 ∗ 𝛽1) ∗  I  (82) 

It means that when the future profits are uncertain, the threshold (𝐸 ∗ 𝑃𝑅̅̅ ̅̅ )∗ must exceed 

the user cost of capital. The relation comes from the deterministic part of capital cost (r*I) 

with an additional term of 
1

2
∗ 𝜎𝐸

2 ∗ 𝛽1 which represents the additional cost of the risk. 

This equation will not be used in the results as it implies an infinite series of cash-flows 

which is not the case of a solar panel (20 years). 

 

4. Model 2: Model with correlation and 2 GBM 
 

This model is based on the work of McDonald & Siegel [23], again in an exotic way. 2 GBM 

processes are considered, the electricity price (E) as in the model 1 and a stochastic investment 

cost (I). No maintenance cost is used to keep the model simple. 

 

Model 2: Solution by a similar model based on the work of McDonald & Siegel [23] 

Definition of the variables 

𝑃𝑅̅̅ ̅̅  : assume an exogenous production of energy that can be constant or determined by a 

function 

E: price of the electricity following a Brownian motion 

G: gains generated from the production of energy 

 G = E * 𝑃𝑅̅̅ ̅̅  
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I: stochastic cost of the investment, which is equal to the sunk cost, because the solar panel lose 

all its value while it’s installed on a roof (see L below) 

F: the value of the project  

The process equations are: 

 𝑑 𝐸 =  𝛼𝐸 ∗ 𝐸 ∗ 𝑑𝑡 +  𝜎𝐸 ∗  𝐸 ∗  𝑑𝑊1 (83) 

 

 𝑑 𝐺 =  𝛼𝐸 ∗ 𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗ 𝑑𝑡 +  𝜎𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊1 (84) 

 

In this model, I is given by the following Geometric Brownian motion: 

 𝑑 𝐼 =  𝛼𝐼 ∗ 𝐼 ∗  𝑑𝑡 + (𝜎𝐼 ∗ 𝐼 ∗  𝑑𝑊2) (85) 

 

Variance: 

Variance of a project (𝜎2) with correlated variables: 

 𝑉𝑎𝑟(𝑋 − 𝑌) = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌) − 2 ∗ 𝐶𝑜𝑣(𝑋; 𝑌) (86) 

By relation with equation 39, it gives in this case: 

 (𝑑 𝐺)2 =  𝜎𝐸
2 ∗ 𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗  𝑑𝑡 (87) 

 

 (𝑑 𝐼)2 =  𝜎𝐼
2 ∗  𝐼2 ∗  𝑑𝑡 (88) 

Where the covariance between dG and dI is given by: 

 

𝐶𝑜𝑣( 𝑑𝐺; 𝑑𝐼) = 𝑑𝐺 ∗ 𝑑𝐼

= (𝛼𝐸 ∗ 𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗ 𝑑𝑡

+ ( 𝜎𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊1))

∗ (𝛼𝐼 ∗ 𝐼 ∗  𝑑𝑡 + (𝜎𝐼 ∗ 𝐼 ∗  𝑑𝑊2))

= ((𝛼𝐸 ∗ 𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗ 𝑑𝑡) ∗ (𝛼𝐼 ∗ 𝐼 ∗  𝑑𝑡))

+ ((𝛼𝐸 ∗ 𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗ 𝑑𝑡) ∗ (𝜎𝐼 ∗ 𝐼 ∗  𝑑𝑊2))

+ (( 𝜎𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊1) ∗ (𝛼𝐼 ∗ 𝐼 ∗  𝑑𝑡))

+ (( 𝜎𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊1) ∗ (𝜎𝐼 ∗ 𝐼 ∗  𝑑𝑊2)) 

(89) 

 

The first term is equal to 0 because (dt)² = 0 (from Ito’s Lemma) 

The second and third term are equal to 0 because (dt*dW) goes faster to 0 than other 

terms 

 𝑑𝑊 = √𝑑𝑡 ∗ 𝑟𝑛𝑜𝑟𝑚(0; 1) (90) 

The results of two stochastic terms is given by: 

 
𝑑𝑊1 ∗ 𝑑𝑊2 = √𝑑𝑡 ∗ 𝑟𝑛𝑜𝑟𝑚(0; 1) ∗ √𝑑𝑡 ∗ 𝑟𝑛𝑜𝑟𝑚(0; 1) = 𝑑𝑡 ∗ 𝜌𝑊1;𝑊2

= 𝑑𝑡 ∗ 𝜌𝐺;𝐼 
(91) 

It implies that the final covariance formula is, 
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𝐶𝑜𝑣( 𝑑𝐺; 𝑑𝐼) = (( 𝜎𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊1) ∗ (𝜎𝐼 ∗ 𝐼 ∗  𝑑𝑊2)) 

=  𝜎𝐸 ∗ 𝜎𝐼 ∗ 𝑃𝑅̅̅ ̅̅ ∗ 𝐸 ∗ 𝐼 ∗ 𝜌𝐺;𝐼 ∗ 𝑑𝑡 
(92) 

 

When the boundary is independent of time (t), it’s possible to obtain a solution where it’s optimal 

to invest when V/F exceeds C* at the first time and wait before to invest other time. It’s the same 

logic than the value of G* in the first model, represented here by C*. 

 

Developing the components of differential equation of F following Ito’s lemma [8, pp. 79-

82] 

Using Ito’s lemma: 

 

𝑑𝐹(𝐺, 𝐼, 𝑡) =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
𝑑𝐺 +

𝜕𝐹

𝜕𝐼
𝑑𝐼 +  

1

2
∗
𝜕2𝐹

𝜕2𝑡
𝑑𝑡2 +

1

2
∗

𝜕2𝐹

𝜕2𝐺
𝑑𝐺2

+
1

2
∗

𝜕2𝐹

𝜕2𝐼
𝑑𝐼2 + 

1

2
∗

𝜕2𝐹

𝜕𝐺𝜕𝐼
𝑑𝐺𝑑𝐼 +

1

2
∗

𝜕2𝐹

𝜕𝐼𝜕𝐺
𝑑𝐼𝑑𝐺 + 

1

2

∗
𝜕2𝐹

𝜕𝐺𝜕𝑡
𝑑𝐺𝑑𝑡 +

1

2
∗

𝜕2𝐹

𝜕𝐼𝜕𝑡
𝑑𝐼𝑑𝑡 + ⋯ 

(93) 

 

The parts in yellow can be ignored because t goes faster to 0 than the other 

parameters. 

 
𝑑𝐹(𝐺, 𝐼, 𝑡) =  

𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
𝑑𝐺 +

𝜕𝐹

𝜕𝐼
𝑑𝐼 +

1

2
∗

𝜕2𝐹

𝜕2𝐺
𝑑𝐺2 +

1

2
∗

𝜕2𝐹

𝜕2𝐼
𝑑𝐼2

+ [
1

2
∗

𝜕2𝐹

𝜕𝐺𝜕𝐼
𝑑𝐺𝑑𝐼 +

1

2
∗

𝜕2𝐹

𝜕𝐼𝜕𝐺
𝑑𝐼𝑑𝐺] 

(94) 

 

The terms into bracket can be summed with Schwarz’s lemma 

 
𝑑𝐹(𝐺, 𝐼, 𝑡) =  

𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
𝑑𝐺 +

𝜕𝐹

𝜕𝐼
𝑑𝐼 +

1

2
∗

𝜕2𝐹

𝜕2𝐺
𝑑𝐺2 +

1

2
∗

𝜕2𝐹

𝜕2𝐼
𝑑𝐼2

+ [
𝜕2𝐹

𝜕𝐺𝜕𝐼
𝑑𝐺𝑑𝐼] 

(95) 

 

dG*dI is equal to the covariance between dG and dI 

 
𝑑𝐹(𝐺, 𝐼, 𝑡) =  

𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
𝑑𝐺 +

𝜕𝐹

𝜕𝐼
𝑑𝐼 +

1

2

∗ [
𝜕2𝐹

𝜕2𝐺
𝑣𝑎𝑟(𝑑𝐺) +

𝜕2𝐹

𝜕2𝐼
𝑣𝑎𝑟(𝑑𝐼) + 2

𝜕2𝐹

𝜕𝐺𝜕𝐼
𝑐𝑜𝑣(𝑑𝐺𝑑𝐼)] 

(96) 

Replacing variance and covariance by their values, 
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𝑑𝐹(𝐺, 𝐼, 𝑡) =  
𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝐺
(𝜇𝐸 ∗ 𝐸 ∗ 𝑃𝑅̅̅ ̅̅  ∗ 𝑑𝑡 +  𝜎𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊1)

+
𝜕𝐹

𝜕𝐼
(𝜇𝐼 ∗ 𝐼 ∗  𝑑𝑡 + (𝜎𝐼 ∗ 𝐼 ∗  𝑑𝑊2)) +

1

2

∗ [
𝜕2𝐹

𝜕2𝐺
( 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2 ∗  𝑑𝑡) +
𝜕2𝐹

𝜕2𝐼
( 𝜎𝐼

2 ∗  𝐼2 ∗  𝑑𝑡)

+ 2
𝜕2𝐹

𝜕𝐺𝜕𝐼
( 𝜎𝐸 ∗ 𝜎𝐼 ∗ 𝑃𝑅̅̅ ̅̅ ∗ 𝐸 ∗ 𝐼 ∗ 𝜌𝐺;𝐼 ∗ 𝑑𝑡)] 

(97) 

 

 

𝑑𝐹(𝐺, 𝐼, 𝑡)

=

[
 
 
 
 

𝜕𝐹

𝜕𝑡
+

𝜕𝐹

𝜕𝐺
(𝜇𝐸 ∗ 𝐸 ∗  𝑃𝑅̅̅ ̅̅ ) +

𝜕𝐹

𝜕𝐼
(𝜇𝐼 ∗ 𝐼) +

1

2
∗ [

𝜕2𝐹

𝜕2𝐺
( 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2) +
𝜕2𝐹

𝜕2𝐼
( 𝜎𝐼

2 ∗  𝐼2) + 2
𝜕2𝐹

𝜕𝐺𝜕𝐼
( 𝜎𝐸 ∗ 𝜎𝐼 ∗ 𝑃𝑅̅̅ ̅̅ ∗ 𝐸 ∗ 𝐼 ∗ 𝜌𝐺;𝐼)]

]
 
 
 
 

∗ 𝑑𝑡 + [( 𝜎𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗  𝐸)𝑑𝑊1 + (𝜎𝐼 ∗ 𝐼)𝑑𝑊2] 

(98) 

The first member into brackets represent the determinist part and the second, the 

stochastic ones. 

 

Risk-free portfolio and arbitrage conditions [7] 

To obtain a perfect hedge of the portfolio (Port) it requires a position on the underlying 

F with a short position size of 𝚫𝟏 in G and 𝚫𝟐 in I. G and I represent the risk driver of 

the option and must neutralized to obtain a risk free portfolio (which avoid arbitrage 

opportunities). 

 𝑃𝑜𝑟𝑡 = 𝐹 − Δ1𝐺 − Δ2𝐼 (99) 

In the increment format, 

 𝑑𝑃𝑜𝑟𝑡 = 𝑑(𝐹 − Δ1𝐺 − Δ2𝐼) (100) 

Substituting equation 97 into equation 99, 

 

𝑑𝑃𝑜𝑟𝑡 = (
𝜕𝐹

𝜕𝐺
− Δ1)𝑑𝐺 + (

𝜕𝐹

𝜕𝐼
− Δ2)𝑑𝐼

+ [
1

2

∗ [
𝜕2𝐹

𝜕2𝐺
( 𝜎𝐸

2 ∗  𝑃𝑅̅̅̅̅ 2
 ∗  𝐸2) +

𝜕2𝐹

𝜕2𝐼
( 𝜎𝐼

2 ∗  𝐼2)

+ 2
𝜕2𝐹

𝜕𝐺𝜕𝐼
( 𝜎𝐸 ∗ 𝜎𝐼 ∗ 𝑃𝑅̅̅̅̅ ∗ 𝐸 ∗ 𝐼 ∗ 𝜌

𝐺;𝐼
)] 𝑑𝑡]  

(101) 

Where the solution of Δ1 and Δ2 are given by: 

 
Δ1 =

𝜕𝐹

𝜕𝐺
 

Δ2 = 
𝜕𝐹

𝜕𝐼
 

(102) 
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The expected return of Electricity price (E) and Investment cost (I) can be defined as 𝜇𝐸 

and 𝜇𝐼. As it has been defined in the theorical part, it relies on the CAPM model where 

r is the free-risk rate, 𝜙 is the market price of risk56, 𝜌𝐸;𝑚 the correlation between E and 

the market (m) and 𝜌𝐼;𝑚  the correlation between I and the market (m). It can be 

compared to the 𝛽 as it represents the additional cost of risk compared to the market. 

 𝜇𝐸 = 𝑟 + 𝜙 ∗ 𝜌𝐸;𝑚 ∗ 𝜎𝐸 (103) 
 

 𝜇𝐼 = 𝑟 + 𝜙 ∗ 𝜌𝐼;𝑚 ∗ 𝜎𝐼 (104) 

The measure of the dividend rate (𝛿𝐸 and 𝛿𝐼) is given by: 

 𝛿𝐸 = 𝜇𝐸 − 𝛼𝐸 (105) 

 

 𝛿𝐼 = 𝜇𝐼 − 𝛼𝐼 (106) 

Where is 𝛼𝐸  and 𝛼𝐼is given by the trend of the Geometric Brownian Motion 

 

To hold the short position, it is necessary to have: 

 (Δ1 ∗ 𝛿𝐸 ∗ 𝐺 + Δ2 ∗ 𝛿𝐼 ∗ 𝐼)𝑑𝑡 (107) 

As G and I give an additional return (𝛿𝐸 and 𝛿𝐼), it will lower the required rate of 

return to maintain the hedge of the option. 

 

𝑟 ∗ (𝐹 − (Δ1 ∗ 𝛿𝐸 ∗ 𝐺 + Δ2 ∗ 𝛿𝐼 ∗ 𝐼)) ∗ 𝑑𝑡 =  (
𝜕𝐹

𝜕𝐺
− Δ1) 𝑑𝐺 + (

𝜕𝐹

𝜕𝐼
−

Δ2)𝑑𝐼 + [
1

2
∗ [

𝜕2𝐹

𝜕2𝐺
( 𝜎𝐸

2 ∗  𝑃𝑅̅̅̅̅ 2
 ∗  𝐸2) +

𝜕2𝐹

𝜕2𝐼
( 𝜎𝐼

2 ∗  𝐼2) + 2
𝜕2𝐹

𝜕𝐺𝜕𝐼
( 𝜎𝐸 ∗ 𝜎𝐼 ∗

𝑃𝑅̅̅̅̅ ∗ 𝐸 ∗ 𝐼 ∗ 𝜌
𝐺;𝐼

)]𝑑𝑡]  

(108) 

 

Bellman’s equation: 

 At each increment of time dt, the equilibrium relation must hold, it means that the value 

of the portfolio 

 

1

2
∗ [

𝜕2𝐹

𝜕2𝐺
( 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2) +
𝜕2𝐹

𝜕2𝐼
( 𝜎𝐼

2 ∗  𝐼2)

+ 2
𝜕2𝐹

𝜕𝐺𝜕𝐼
( 𝜎𝐸 ∗ 𝜎𝐼 ∗ 𝑃𝑅̅̅ ̅̅ ∗ 𝐸 ∗ 𝐼 ∗ 𝜌𝐺;𝐼)] + (𝑟 − 𝛿𝐸)

∗ 𝐺 ∗
𝜕𝐹
𝜕𝐺

+ (𝑟 − 𝛿𝐼) ∗ 𝐼 ∗
𝜕𝐹
𝜕𝐼

− 𝑟 ∗ 𝐹 = 0 

(109) 

 

56 𝜙 =
(𝑟𝑀−𝑟)

𝜎𝑀
 ; 𝑟𝑀 is the expected return on the market; 𝜎𝑀 is the volatility of that return 
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The difficulty with this model is the presence of 2 GBM which transforms the conditions 

into a free-boundary problem. McDonald & Siegel have found a solution for 2 GBM, but 

an increase to 3 GBM could tend to an unsolvable analytical equation.   

 

 

 

 

 

 

Solution to the Bellman’s equation and boundary conditions [8, pp. 207-211] 

Z is just the name of an option based on G; only used once to apply the boundary 

conditions. The detail about the boundary is just explained below. 

 𝐹(𝐺, 𝐼) = 𝑍(𝐺) − 1 =
𝐺

𝛿𝐸
− 1 (110) 

 

Figure 19 - Free Boundary problem [8, p. 208] 

 

 

The boundary between the two regions becomes a value-matching condition (between 

Wait and Invest area). As the 2 functions meet tangentially at the boundary, we have 2 

smooth-pasting conditions. 

 
𝜕𝐹

𝜕𝐺
(𝐺, 𝐼) = 𝑍′(𝐺) =

1

𝛿𝐸
 (111) 

 

 
𝜕𝐹

𝜕𝐼
(𝐺, 𝐼) = −1 (112) 
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Optimal ratio to invest is formulated as C* 

 𝐶 =
𝐺

𝐼
=

𝐸 ∗ 𝑃𝑅̅̅̅̅

𝐼
 (113) 

When the ratio 
𝐺

𝐼
 reaches the optimal level C*, invest will be the best choice based on 

the actual information’s and situation. 

 

The figure tells us that the solution must be linear, we can set: 

 𝐹(𝐺, 𝐼) = 𝐼 ∗ 𝑓 (
𝐺

𝐼
) = 𝐼 ∗ 𝑓(𝐶) (114) 

And the derivatives as: 

 
𝜕𝐹

𝜕𝐺
(𝐺, 𝐼) = 𝑓′(𝐶) (115) 

 

 
𝜕𝐹

𝜕𝐼
(𝐺, 𝐼) = 𝑓(𝐶) − 𝐶 ∗ 𝑓′(𝐶) (116) 

 

 
𝜕2𝐹

𝜕2𝐺
(𝐺, 𝐼) =

𝑓′′(𝐶)

𝐼
 (117) 

 

 
𝜕2𝐹

𝜕2𝐼
(𝐺, 𝐼) = 𝐶2 ∗

𝑓′′(𝐶)

𝐼
 (118) 

 

 
𝜕2𝐹

𝜕𝐺𝜕𝐼
(𝐺, 𝐼) = −𝐶 ∗

𝑓′′(𝐶)

𝐼
 (119) 

 

Substituting this in the Bellman’s equation, we obtain: 

 

1

2
∗ [

𝑓′′(𝐶)

𝐼
( 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2) + 𝐶2 ∗
𝑓′′(𝐶)

𝐼
( 𝜎𝐼

2 ∗  𝐼2)

+ 2(−𝐶 ∗
𝑓′′(𝐶)

𝐼
) ( 𝜎𝐸 ∗ 𝜎𝐼 ∗ 𝑃𝑅̅̅ ̅̅ ∗ 𝐸 ∗ 𝐼 ∗ 𝜌𝐺;𝐼)] + (𝑟 − 𝛿𝐸)

∗ 𝐺 ∗ 𝑓′
(𝐶) + (𝑟 − 𝛿𝐼) ∗ 𝐼 ∗ (𝑓(𝐶) − 𝐶 ∗ 𝑓′

(𝐶)) − 𝑟 ∗ 𝐹

= 0 

(120) 

 

 

1

2
∗ [

𝑓′′(𝐶)

𝐼
( 𝜎𝐸

2 ∗  𝑃𝑅̅̅ ̅̅ 2 ∗  𝐸2) + 𝐶2 ∗
𝑓′′(𝐶)

𝐼
( 𝜎𝐼

2 ∗  𝐼2)

+ 2(−𝐶 ∗
𝑓′′(𝐶)

𝐼
) ( 𝜎𝐸 ∗ 𝜎𝐼 ∗ 𝑃𝑅̅̅ ̅̅ ∗ 𝐸 ∗ 𝐼 ∗ 𝜌𝐺;𝐼)] + (𝑟 − 𝛿𝐸)

∗ 𝐺 ∗ 𝑓′
(𝐶) + (𝑟 − 𝛿𝐼) ∗ 𝐼 ∗ (𝑓(𝐶) − 𝐶 ∗ 𝑓′

(𝐶)) − 𝑟 ∗ 𝐹

= 0 

(121) 
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57 

1

2
∗ [𝜎𝐸

2 + 𝜎𝐼
2 − 2 ∗ 𝜌𝐺;𝐼 ∗ 𝜎𝐸 ∗ 𝜎𝐼 ∗ 𝑃𝑅̅̅̅̅ ∗ 𝐸 ∗ 𝐼] ∗ (𝐶2 ∗ 𝑓′′(𝐶))

+ [𝛿𝐼 − 𝛿𝐸  ] ∗ (𝐶 ∗ 𝑓′(𝐶)) − [𝛿𝐼] ∗ 𝑓(𝐶) = 0 

(122) 

 

The value-matching conditions becomes: 

 𝑓(𝐶) =
𝐶

𝛿𝐸

− 1 (123) 

 

The smooth-pasting conditions becomes: 

 𝑓′(𝐶) =
1

𝛿𝐸

 (124) 

 

 𝑓(𝐶) − 𝐶 ∗ 𝑓′(𝐶) = −1 (125) 
 

Given these conditions, we can solve the equation: 

 

1

2
∗ [𝜎𝐸

2 + 𝜎𝐼
2 − 2 ∗ 𝜌𝐺;𝐼 ∗ 𝜎𝐸 ∗ 𝜎𝐼 ∗ 𝑃𝑅̅̅̅̅ ∗ 𝐸 ∗ 𝐼] ∗ (β ∗ (β − 1 ))

+ [𝛿𝐼 − 𝛿𝐸  ] ∗ (𝛽) − [𝛿𝐼] = 0 
(126) 

 

 

1

2
∗ [𝜎𝐸

2 + 𝜎𝐼
2 − 2 ∗ 𝜌𝐺;𝐼 ∗ 𝜎𝐸 ∗ 𝜎𝐼 ∗ 𝑃𝑅̅̅ ̅̅ ∗ 𝐸 ∗ 𝐼] ∗ β2

+ [𝛿𝐼 − 𝛿𝐸

− (
1

2
∗ [𝜎𝐸

2 + 𝜎𝐼
2 + 2 ∗ 𝜌𝐺;𝐼 ∗ 𝜎𝐸 ∗ 𝜎𝐼 ∗ 𝑃𝑅̅̅ ̅̅ ∗ 𝐸 ∗ 𝐼])] ∗ (𝛽)

− [𝛿𝐼] = 0 

(127) 

 

Dividing by 𝜎2: 

 
1

2
∗ [𝜎2] ∗ β2 + [𝛿𝐼 − 𝛿𝐸 − (

1

2
∗ [𝜎2])] ∗ (𝛽) − [𝛿𝐼] = 0 (128) 

 

 
1

2
∗ β2 + [

(𝛿𝐼 − 𝛿𝐸)

𝜎2
− (

1

2
)] ∗ (𝛽) − [

𝛿𝐼

𝜎2
] = 0 (129) 

 

 

Roots and solution of the equation: 

Where β is equal to: 

 
57 The symbol after 𝜎𝐼

2 should be a “+” but is converted into “-“ to respect the rule given by Var(X-Y) 
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 𝛽 =  
−𝑏 ± √𝑏2 − 4 ∗ 𝑎 ∗ 𝑐

2 ∗ 𝑎
 (130) 

 

 𝑎 =  
1

2
  ; 𝑏 =  [

(𝛿𝐼 − 𝛿𝐸)

𝜎2
− (

1

2
)] ;   𝑐 = − [

𝛿𝐼

𝜎2] (131) 

 

 

𝛽1

= 

− [
(𝛿𝐼 − 𝛿𝐸)

𝜎2 − (
1
2
)] + √[

(𝛿𝐼 − 𝛿𝐸)
𝜎2 − (

1
2
) ]

2

− 4 ∗ (
1
2 ∗ − [

𝛿𝐼

𝜎2])

2 ∗
1
2

 

(132) 

 𝛽1 =  [−
(𝛿𝐼 − 𝛿𝐸)

𝜎2
+ (

1

2
)] + √[

(𝛿𝐼 − 𝛿𝐸)

𝜎2
− (

1

2
) ]

2

+ 2 ∗ [
𝛿𝐼

𝜎2
] (133) 

 

 𝛽1 =  [−
(𝛿𝐼 − 𝛿𝐸)

𝜎2
+ (

1

2
)] + √[

(𝛿𝐼 − 𝛿𝐸)

𝜎2
− (

1

2
) ]

2

+ 2 ∗ [
𝛿𝐼

𝜎2
] (134) 

 

 𝛽2 =  [−
(𝛿𝐼 − 𝛿𝐸)

𝜎2
+ (

1

2
)] − √[

(𝛿𝐼 − 𝛿𝐸)

𝜎2
− (

1

2
) ]

2

+ 2 ∗ [
𝛿𝐼

𝜎2
] (135) 

 

The first root is greater than the second and the system produces a solution only when:  

𝐼𝑓 𝛿𝐼 𝑎𝑛𝑑 𝛿𝐸 𝑎𝑟𝑒 𝑏𝑜𝑡ℎ > 0 , 𝑡ℎ𝑒𝑛  𝛽1 > 1 

 

If it were not the case, I or G will lose value with the time and the system will become 

unsolvable. If one of the values are larger than the risk-free interest, the system also 

becomes unsolvable by mathematical relation. 

 

We find: 

 𝐶∗ =
𝐺∗

𝐼∗
=

𝐸∗ ∗ 𝑃𝑅̅̅̅̅

𝐼∗
=

𝛽
1

𝛽
1
− 1

∗ 𝛿𝐸 (136) 

 

 𝐹(𝐺, 𝐼) = 𝐼 ∗ 𝑓(𝐶) = 𝐼 ∗ (
𝐶

𝛿𝐸
− 1) = 𝐼 ∗ (

𝐸 ∗ 𝑃𝑅̅̅̅̅
𝐼
𝛿𝐸

− 1) (137) 

 

Comparison test with the results of the reference research article 

Computing the solution with the values: 
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𝛼𝐸 = −0.022, 𝛼𝐼 = −0.118, 𝜎𝐼 = 0.2, 𝜎𝐼 = 0.2, 𝜌𝐸;𝐼 = 0.0, 𝑟𝑓𝑟𝑒𝑒𝑟𝑖𝑠𝑘 = 0.03, 𝜌𝐸;𝑀

= 0.8,  

𝜌𝐼;𝑀 = −0.8, 𝑟𝑀  =  0.09, 𝜎𝑀  =  0.2 

An optimal ratio of 1.863 is produced which is in line with the results of the article of 

McDonald & Siegel. 
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5. Model 3: Least Square Monte-Carlo (LSM) 
 

 As explained before, LSM is a useful tool to value complex real options. Some 

precisions will be made about this technique to avoid misunderstandings about the results. 

 In a real option value problem, it’s necessary to quantify the expected value of 

the project, in the LSM model it can be achieved through a linear regression based on 

the value of the variables at each time. The option is supposed to be a Markov chain 

where all the information is summarized in the actual value. Using this simple forecasting 

should lead to an accurate value but the coefficients can be not significant, their values 

varies with the time and can be significative at 99% on time 50 but not at 95% on time 

100. As stated in the paper of Longstaff & Schwartz, it can be explained by an 

unexpected change in the value of the variables due to the uncertainty and so the 

significance of the coefficients is less relevant. The risk of not including an important 

variable is higher than the influence of an insignificant coefficient58. 

 A second advantage of LSM is that it requires around 1000 simulation to get a 

convergence to the solution, it decreases considerably the time of computation. 

 The weak point of this method is that underestimate the value of the option 

compared to the analytical solution. It’s why some cautious need to be done when the 

LSM is only the available solution. The simulation considers continuous values where each 

increment (dE) is summed to the value of time t-1. 

 

a) Variables considered in the model 

 The values used in this model will be the same than presented in the summary 

table above. A reminder is provided here for information. 

Electricity price (E): stochastic 

 𝑑 𝐸 =  𝜇𝐸 ∗ 𝐸 ∗ 𝑑𝑡 +  𝜎𝐸 ∗  𝐸 ∗  𝑑𝑊𝑡 (138) 

 

Quantity of energy produced (Q): mean by year or month with stochastic increment 

 𝑑 𝑄 =  𝜂̅ ∗ (𝑄̅ − 𝑄) ∗ 𝑑𝑡 +  𝜎𝐸 ∗  𝑑𝑊𝑡 (139) 

The solar panel produces in the best conditions of production. 

 

Investment cost (I): stochastic with a decreasing trend 

 𝑑 𝐼 =  𝛼𝐼 ∗ 𝐼 ∗  𝑑𝑡 + (𝜎𝐼 ∗ 𝐼 ∗  𝑑𝑊2) (140) 

The cost of replacement of the inverter will be integrated in the initial investment cost 

for a value of 250€ actualized at the rate r for 10 years. 

 
58 Testing of the model provides better results when all the regressions were used, it has also been used by other 
researches on the method. 
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The periodicity of the model is monthly with a continuous compounding (a year is 

considered here to be 12 months of 30 days). Values expressed in yearly format are 

converted into monthly format.59  

General information:   

Life of the installation (guarantee) 20 years  

Maturity of the option 10 years  

Power of the installation 3 kWc  

Electricity price variable (E):  range  
[100€ ; 700€] 

Initial value: 220, 260 and 300  

Trend: 2%, 3%, 4% and 7%/year  

Volatility: 0,2/year  

Electricity produced variable (Q):  range  
[20 ; 200] 

Initial value 104,96  

𝑄̅ 104,96  

𝜂̅ 3,1033  

𝜎̂ 126,2737  

Loss factor 0,5%/year  

Investment cost (I):  range  
[500€ ; 7000€] 

Initial value: 6.500,00€  

Trend: -11,5%/year  

Volatility: 0,075/year  

Inverter cost:  250

(1 + 𝑟)10
 

Summed with 
initial I 

Maintenance cost: 0,75% * I  

Walloon Prosumer Tax (PRO_WL):   

Initial value: 78€ /kWe Valued as  
(1-37,76%)  
of the kWc 

Trend: 1%/year  

Auto consumption factor:  37,76%  

Flemish Prosumer Tax (PRO_FL):   

Initial value: 110€ /kW of kVA Valued as initial 
kWc 

Trend: 1%/year  

Brussels Certificat Vert (CV):   

Initial value: 96€/CV  

Trend: 0,3%/year  

Volatility: 0,03/year range  
[65€ ; 100€] 

CV number 3 CV/ 1.000 kWh  

Interest rate (r) 0,5%; 1%; 3% and 5%/year  

 

59 Interest rate monthly (R_int_monthly) = √(1 + 𝑅𝑖𝑛𝑡𝑦𝑒𝑎𝑟𝑙𝑦
)12 − 1 
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b) Scenarios 

Multiple scenarios are considered in the model based on the different regimes applicable 

in the regions of Belgium in 2019: 

❖ A1: Situation of a solar panel without region specificities (basis) 

❖ A2: Situation of a solar panel in Brussels region with a CV system 

❖ A3: Situation of a solar panel in Walloon region with the Prosumer tax (PRO_WL) 

❖ A4: Situation of a solar panel in Flemish region with a Prosumer tax (PRO_FL) 

 

c) How the algorithm works 

 The algorithm runs with the inputs of the variable’s summary table, default values 

are set in the case where no inputs are provided.  The output takes the form of a data 

frame that stores all the results from the paths of each simulation of each variable, cash-

flows, NPV and option value (some treatments are necessary to show the results). Data’s 

can easily be plotted to obtain a visual form of the results. The word “activation” means 

here “use the call to invest in the project”. 

Process: 

1) Based on the inputs of the model, a set of paths for all the stochastic variables is 

generated. One example is provided on the next graph for Electricity price, Solar 

irradiance, CV price and Investment cost (one period means one month). 
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2) Cash-flows are computed through the valuation formulas of the inputs.  

❖ A1: Situation of a solar panel without region specificities (basis) 

 
Elec_price (in mWh) * Solar_irradiance (in kWh) *3kWc 
*0.86(conversion factor of the energy) /1000 – Maintenance_cost 

(141) 

 

❖ A2: Situation of a solar panel in Brussels region with a CV system 

 

Elec_price (in mWh) *Solar_irradiance (in kWh) *3kWc 
*0.86(conversion factor of the energy) /1000 – Maintenance_cost 
+ 3* CV_price *Solar_irradiance (in kWh) *3kWc *0.86(conversion 
factor of the energy) /1000 

(142) 

 

❖ A3: Situation of a solar panel in Walloon region with the Prosumer tax (PRO_WL) 

 
Elec_price (in mWh) * Solar_irradiance (in kWh) *3kWc 
*0.86(conversion factor of the energy) /1000 – Maintenance_cost 
- PRO_WL *3kWc * 1/12 (monthly payment) 

(143) 

 

❖ A4: Situation of a solar panel in Flemish region with a Prosumer tax (PRO_FL) 

 
Elec_price (in mWh) * Solar_irradiance (in kWh) *3kWc 
*0.86(conversion factor of the energy) /1000 – Maintenance_cost 
- PRO_FL *3kWc * 1/12 (monthly payment) 

(144) 
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3) Present values of those cash-flows are calculated but it doesn’t include the investment 

cost. It’s just more convenient to compute the value of the optimal ratio with the next step. 

 

4) Net present value is determined by the difference between Present values and 

Investment cost (maximum at the end of option maturity) 
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5) Termination value of the ROV which is a kind of 0 strike American option, is determined 

based on the following rule: 

 𝑅𝑒𝑎𝑙 𝑂𝑝𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 = max(𝑁𝑃𝑉; 0) (145) 

 

6) Implementation of the Least Square Monte Carlo (LSM): it follows a roll-back 

equilibrium (the process is recursive in time) and at each time t values are computed as: 

1. Determination of the actual value based on the 𝑁𝑃𝑉𝑡+1 actualized once at the 

interest rate (r which is an input) 

2. Determination of the continuation value (value of the option not activated): it’s 

based on a linear regression on the main variables and change for each scenario. 

The results of each regression are used to predict the real option value based on 

the information’s at time t of the stochastic variables (a basic case of forecasting 

with the most important values)60: 

𝐴1 ∶    𝐴𝑐𝑡𝑢𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒

= 𝛼 + Β1 ∗ 𝐸 + Β2 ∗ 𝐸2 + Β3 ∗ 𝑄 + Β4 ∗ 𝑄2 + B5 ∗ 𝐼 + 𝐵6 ∗ 𝐼2 + 𝐵7

∗ (𝐸 ∗ 𝑄) + 𝐵8 ∗ (𝐸 ∗ 𝐼) + 𝐵9 ∗ (𝑄 ∗ 𝐼) 

𝐴2 ∶    𝐴𝑐𝑡𝑢𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒

= 𝛼 + Β1 ∗ 𝐸 + Β2 ∗ 𝐸2 + Β3 ∗ 𝑄 + Β4 ∗ 𝑄2 + B5 ∗ 𝐼 + 𝐵6 ∗ 𝐼2 + 𝐵7

∗ (𝐸 ∗ 𝑄) + 𝐵8 ∗ (𝐸 ∗ 𝐼) + 𝐵9 ∗ (𝑄 ∗ 𝐼) + 𝐵10 ∗ 𝐶𝑉 + 𝐵11 ∗ 𝐶𝑉2

+ 𝐵12 ∗ (𝐸 ∗ 𝐶𝑉) + 𝐵13 ∗ (𝑄 ∗ 𝐶𝑉) + 𝐵14 ∗ (𝐼 ∗ 𝐶𝑉) 

𝐴3 ∶    𝐴𝑐𝑡𝑢𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒

= 𝛼 + Β1 ∗ 𝐸 + Β2 ∗ 𝐸2 + Β3 ∗ 𝑄 + Β4 ∗ 𝑄2 + B5 ∗ 𝐼 + 𝐵6 ∗ 𝐼2 + 𝐵7

∗ (𝐸 ∗ 𝑄) + 𝐵8 ∗ (𝐸 ∗ 𝐼) + 𝐵9 ∗ (𝑄 ∗ 𝐼) + 𝑃𝑅𝑂_𝑊𝐿 

𝐴4 ∶    𝐴𝑐𝑡𝑢𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒

= 𝛼 + Β1 ∗ 𝐸 + Β2 ∗ 𝐸2 + Β3 ∗ 𝑄 + Β4 ∗ 𝑄2 + B5 ∗ 𝐼 + 𝐵6 ∗ 𝐼2

+ 𝐵7 ∗ (𝐸 ∗ 𝑄) + 𝐵8 ∗ (𝐸 ∗ 𝐼) + 𝐵9 ∗ (𝑄 ∗ 𝐼) + 𝑃𝑅𝑂_𝐹𝐿 

 

3. Determination of activation value is given by the rule: max(𝑁𝑃𝑉𝑡; 0) 

4. The maximum between the activation of the option and the continuation value 

is chosen. When the activation is the best choice (true value > predicted value), a 

dummy takes the value 1 to determine at which time it’s optimal to invest. On the 

next graph, the optimal time is highlighted with a red vertical line (in this case at 

time 82 or 8,6 years for this path). 

 
60 After several test the basis function provides better results even if some coefficients are not significant, the use 
of the complete model will be preferred for this reason. The option value slightly lower with a reduced model but 
miss more often the maximum NPV of the path.  
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6) The previous steps are done for each simulation and give a table of the NPV at the 

first-time t of the activation (best opportunity of activation). 

 

7) The mean of all the values of step 6 is computed and gives the Real Option Value at 

time 0. The convergence is measured by the contribution to the mean of each simulation.  

A number of simulations about 1200 is generally enough to obtain a convergence of the 

option price. More simulations induce more computation times and don’t bring additional 

precisions to the calculus. 
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8) Based on the optimal activation time of each simulation, the ratio Flows/Investment 

costs is determined. The mean and the convergence are calculated in the same way than 

the mean of option value in step 7. 
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6. Comparison of the results 
 

a) Results 

Model 1 & 2: Results with the basic scenario 

The 2 first model will be tested together as they provide both an analytical solution. For 

model 1 and 2, the value G is determined by: 

 
𝐺 =  ∑(𝐸𝑡 ∗ 𝑃𝑅̅̅ ̅̅ ∗ 12 𝑚𝑜𝑛𝑡ℎ𝑠 ∗ 3𝑘𝑊𝑐 ∗ 0,86 (𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟)/1000)

20

𝑖=1

∗ 𝑒−𝑟∗𝑡 

(146) 

Where G follows: 

 𝑑 𝐺 =  𝛼𝐸 ∗ 𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗ 𝑑𝑡 +  𝜎𝐸 ∗  𝑃𝑅̅̅ ̅̅  ∗  𝐸 ∗  𝑑𝑊𝑡 (147) 

 

With: 

❖ Electricity price – trend: 3%/year 

❖ Electricity price – volatility: 0,2/year 

❖ Electricity price – start: 260 €/ mWh 

❖ Production of electricity (𝑃𝑅̅̅ ̅̅ ): 104.96 kWh/month 

❖ Rate of interest – risk free: 3%/year 

❖ Rate of interest – market: ( (1 + 0.3928%)12) − 1/year 

❖ Rate of interest – market volatility: 0,018/year 

❖ Correlation – Electricity and Market: -0,04 

❖ Investment cost: 6.500€ 

❖ Investment cost – trend: -11,5%/year 

❖ Investment cost – volatility: 0,075/year 

❖ Correlation – Electricity and Market: 0,32 

 

Model 1 

Applying formulas n°77 to 79, it gives an analytical solution approximated for a solar 

panel installation for 20 years. A slight difference appears as the installation doesn’t live 

infinitely, it’s why formula n°81 is not used here. 

The option value (F) is given by: 

𝐹 = 𝐴1 ∗ 𝐺𝛽1 + 𝐴2 ∗ 𝐺𝛽2 

Where 𝐴2 is equal to 0, 

Results 

Optimal ratio 3,47 G* 22.602€ 

A1 0,01244 A2 Fixed at 0 

Beta 1 1,4036 Beta 2 Fixed at 0 
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The actual value of G is 12.569,77€. The real option value is in this case: 

 𝐴1 ∗ 𝐺𝛽 = 0,01244 ∗ 12.569,771,4036 = 7.057,26 € (148) 

  

This value is positive and means that it should be better to wait. It can be explained by 

the value of G, it’s lower than the optimal level G* (22.602€) and it’s not optimal to 

invest with the actual information’s and situation. Using the optimal ratio information, 

12.569,77€ is lower than 3.47*6.500€ (investment cost). The same conclusion applies 

here. 

This cost should play a key role in the option value as the trend is negative(-11,5%/year). 

This specificity is not considered with the model 1 as investment cost is assumed fixed, it’s 

why no additional tests are executed with this first approach. 

 

Model 2 

Based on the formula n°136, the model gives: 

 Results 

Optimal Ratio -23,66 

Beta 1 0,9594 

Delta E -0,8% 

Delta I 16,92% 

No solution can be obtained from this model because 𝛿𝐸 (delta E, or a measure of the 

dividend rate of the Electricity price) is negative. Additionally, 𝛿𝐼 (delta E, or a measure 

of the dividend rate of the Investment cost price) is larger than the interest rate. No 

convergence could happen with those parameters values. It’s equivalent to actualize on 

an infinite horizon with a negative rate of interest, the value can only increase with the 

time. Trying to compute the real option value with G (12.569,77€), it gives: 

 𝑊(𝐺, 𝐼) =  𝐼 ∗ (
𝐺

𝐼

𝛿𝐸
− 1) = 6500 ∗ (

12.569,77

6500

−0,8%
− 1) = −1.577.721,25  (149) 

Trying to compute the real option value directly with profit flow: 

 𝐸𝑡 ∗ 𝑃𝑅̅̅ ̅̅ ∗ 12 𝑚𝑜𝑛𝑡ℎ𝑠 ∗ 3𝑘𝑊𝑐 ∗ 0,86 (𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟)/1000, it gives: 

 
𝑊(𝐺, 𝐼) =  𝐼 ∗ (

𝐺
𝐼
𝛿𝐸

− 1) = 6500 ∗

(

 
 

260 ∗ 104.96 ∗ 12 ∗ 3 ∗
0.86
1000

6500
−0,8%

− 1

)

 
 

= −112.110,75€ 

(150) 

Those results are a special case, the Real Option Value is negative (with the formula) and 

means that it should be optimal to invest now. The true option value is 0, this relation 

comes from the fact that a call can never be negative and has a minimum value of 0. The 

optimal ratio becomes irrelevant in this case.  

As the 2 analytical model are not able to provide a normal solution, their results will not 

be analyzed more in details for this reason. The investment problem will now be tested 

with a more flexible model which is the LSM model. 
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Model 3: LSM Simulation  

In a first time, results will be analyzed to identify the relation between the inputs. The model 

has been tested (3000 simulations) with all the inputs of the summary table. The scenario 

considers here: 

❖ Rate of interest: 3% 

❖ Electricity price – trend: 3% 

Electricity price - Real Option Value 

Start 220 260 300 

A1      7.324,29 €       8.004,10 €       9.546,24 €  
A2    17.283,48 €     18.507,17 €     20.115,81 €  
A3      5.748,73 €       6.440,33 €       7.873,79 €  
A4      4.009,59 €       4.486,25 €       5.993,04 €  

Electricity price - Optimal ratio 

Start 220 260 300 

A1 2,24 2,37 2,61 
A2 4,29 4,49 4,71 
A3 1,90 2,04 2,27 
A4 1,51 1,62 1,87 

 The results give a positive option value and tend to show that it increases with the 

initial price of electricity. It should mean waiting before investing but the relation with the 

initial price is not logical. One explication can be the fact that the maturity of the option 

is only 10 years, if the investment cost decreases in the time and price of electricity 

increase, it becomes more and more profitable to invest and waiting could bring a higher 

NPV until the end of the option life (10 years) where the value falls to 0. It can be proved 

with the next graph that represents the mean of the different NPV’s along the generated 

paths. This is a growing function, NPV will rise with the time and remains positive within 

a confidence interval of 99% between 8.219,49€ and 8.628,42€ (mean: 8.423,96€; 

standard deviation: 4.357,61; 3000 simulations). The local maximum of the function only 

appears at the end of the option maturity. The option value gives the difference, 

actualized at rate r, between the NPV at the end (around 14.500€) of the option maturity 

and the NPV at time 0 (around 8.500€). Capitalizing the difference on 10 years (r =3%), 

it gives a value around 8.000€. It’s the same than the real option value which comforts 

the explication. 
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Some additional tests have also been conducted with an option maturity of 20 years on 

the solar panel in Flemish region (lowest profitability) and with a maturity of 20 years 

with an investment cost trend of -6%/year. The same conclusion applies here: real option 

has a growing positive value with the time. 

Flemish region (A4) 
Option maturity: 20 years 

Investment cost trend: -11.6%/year 

 

Flemish region (A4) 
Option maturity: 20 years 

Investment cost trend: -6%/year 

 

 An investor could have a higher profitability by waiting but he can wait a long 

time (or forever) as the investment cost decreases rapidly. It confirms the results of the 

model 2, investing now could be treated as an optimal choice even if the real option is 

positive. It can be considered that’s value will be eternal positive61 as waiting a very 

long time (20 years) will always paying off compared to an immediate investment.  

 On the other side, optimal ratio of investment provides every time a value bigger 

than 1. It confirms the investment theory as the classic rule without uncertainty is to invest 

when NPV=0 or when the optimal ratio is at least equal to 1 (as explained in the theorical 

part). In presence of uncertainty, it should be bigger than 1 as uncertainty induces a cost 

of risk. The results are the lowest for the Flemish case (1,62 for a start price of 260€), it 

can be explained by the Prosumer tax that reduces the profits and requires to invest 

more rapidly than in the other regions as the pay-back time is longer (in number of 

years), in comparison Brussels region has the highest value (4,49 for a start price of 

260€). The difference can be explained by the presence of the CV regime (better to 

wait an increase of their price) and the absence of tax, waiting generate additional 

profits as the growing trend of electricity price is reinforced by CV selling. The reference 

book of Dixit&Pindyck [8] shown with a mathematical demonstration that a good 

approximation of the optimal ratio should be near of 2, which is the case for A1 and A3. 

  

 
61 Eternal means here a time horizon bigger than 20 years, the option will lose its value when investment cost will 
be stable as the electricity price but it will not happen with this time horizon. 
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 To be sure that investing now is an optimal choice, the return of the investment 

must be compared with the return of the stock market for example. It can be the situation 

of an investor who hesitate to spend money between an ETF (on Eurostoxx 50 or on 

S&P500) or with a solar panel investment. To compare both profitability, ETF return will 

be approximated by historical rate of profit and solar panel will be valued with the IRR 

method (for a given interest rate, the average of NPV’s (time 0) should be close to 0). 

The reasons are that the investments in an ETF will generate returns (sometimes positive, 

other times positive) but no sunk appears. It’s different for the case of a solar panel, most 

of the returns will be positive (depend of the solar irradiance which is constant on a long-

time horizon), but a sunk cost is spent at the initial time. The impact of this out-flows 

generate difficulties to compare their total profitability. 

Tests will be now divided by region62: 

a) Flemish region (A4): 

The historical trend of electricity price is about 6% and the price on the 01/01/2019 

is 300€/mWh, the simulation with an annual interest rate of 3% gives: 

Flemish region (A4) 
Trend electricity: 6% 

Initial price: 300€ 
Interest rate: 3% 

 
Real option Value: 8.079,72 
Optimal ratio: 2,40 
Mean NPV time 0: 7.466,35 
Sd NPV time 0: 4.834,07/√1500 

 

Flemish region (A4) 
Trend electricity: 6% 

Initial price: 300€ 
Interest rate: 12% 

 
 

Real option Value: 1.466,06 
Optimal ratio: 1,28 
Mean NPV time 0: 377,85 
Sd NPV time 0: 1748,75/√1500 

 
 

The IRR in the Flemish region is about 12%/year 

 

 

 

 

 

 
62 Based on 1500 simulations, horizon of 10 years and show on 20 years for the IRR determination 
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b) Walloon region (A3): 

The historical trend of electricity price is about 3% and the price on the 01/01/2019 

is 260€/mWh, the simulation with an annual interest rate of 3% gives: 

Walloon region (A3) 
Trend electricity: 3% 

Initial price: 260€ 
Interest rate: 3% 

 
Real option Value: 1.392,14 
Optimal ratio: 1,10 
Mean NPV time 0: 244,39 
Sd NPV time 0: 4.479,09/√1500 

 

Walloon region (A3) 
Trend electricity: 3% 

Initial price: 260€ 
Interest rate: 11% 

 
Real option Value: 1.347,17 
Optimal ratio: 1,22 
Mean NPV time 0: 318,18 
Sd NPV time 0: 1.685,65/√1500 

 

The IRR in the Walloon region is about 11%/year 

c) Brussels region (A3): 

The historical trend of electricity price is about 2% and the price on the 01/01/2019 

is 220€/mWh, the simulation with an annual interest rate of 3% gives: 

Brussels region (A2) 
Trend electricity: 3% 
Initial price:    220€ 
Interest rate:      3% 

 
Real option Value: 16.371,96 
Optimal ratio: 4,11 
Mean NPV time 0: 20.555,54 
Sd NPV time 0: 4226/√1500 

 

Brussels region (A2) 
Trend electricity: 2% 
Initial price:    220€ 
Interest rate:    28% 

 
Real option Value: 551,99 
Optimal ratio: 1,01 
Mean NPV time 0: 17,25 
Sd NPV time 0: 828,02/√1500 
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The IRR in the Brussels region is about 28%/year 

Those results can be found as exceptional and will be compared to the historical profitability. 

As Wallonia applied a CV system and a direct Subsidy, this case is perfect to test the value 

obtained for Brussels (A2). 

 

b) Historical profitability level of a solar panel in Wallonia 

Wallonia will be used as a benchmark of profitability, it’s the region where most of the data 

are available and provides interesting results with the multiple subsidy regime. 

CV in Wallonia 

Considering an installation in 2009 in Wallonia (CV regime) with63: 

• A life installation of 20 years 

• an initial cost of 12.000€64 

• a constant solar irradiance of 104.79 

• The time-series data of Walloon CV from 01/2009 - 12/2018,  

after valued at the minimal price 65€ 

• Trend of electricity price of 3% based on the data of the graph from EDF Luminus 

 

The NPV (01/2009) for this investment is 27.278,08€, the IRR is 31%/year and has a pay 

back-time of 41months (3,4 years). 

 

 

 

 

 
63 Based on data for a 10 kWc by simplification  
64 https://www.engie-electrabel.be/fr/blog/solutions-pour-la-maison/levolution-des-panneaux-photovoltaiques-
depuis-10-ans, consulted on 21/05/2019 

https://www.engie-electrabel.be/fr/blog/solutions-pour-la-maison/levolution-des-panneaux-photovoltaiques-depuis-10-ans
https://www.engie-electrabel.be/fr/blog/solutions-pour-la-maison/levolution-des-panneaux-photovoltaiques-depuis-10-ans
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Direct subsidy in Wallonia 

Considering an installation in 2014 in Wallonia (Qualiwatt subsidy) with: 

• A life installation of 20 years 

• an initial cost of 8.300€ (data of CWAPE) 

• a constant solar irradiance of 104.79 

• Trend of electricity price of 3% based on the data of the graph from EDF Luminus 

 

The NPV (04/2014) for this investment is 11.492,40€, the IRR is 18,4%/year and a pay 

back-time of 56 months (4,7 years). 

 

 

The results of the simulation are totally plausible because the past profitability was much 

higher. The CV system provides twice profits than the basis situation. 
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For the ETF, the distribution of the returns and the evolution of the stock price65 is: 

Eurostoxx50 
Mean: 6,28% 
Standard Deviation: 0,2227 
Kurtosis: -0,38 
Skewness: -0,3968 

 
Var 99%: -32% 
Expected Shortfall 
99%: 

-40,6% 

 

 

S&P500 
Mean: 9,2% 
Standard Deviation: 0,1586 
Kurtosis: 0,64 
Skewness: -0,7731 

 
Var 99%: -19,57% 
Expected Shortfall 
99%: 

-28,56% 

 

 
 

The distribution of the returns of the 2 indices show a mean of 6,28 and 9,2%, it involves 

also the presence of downside risk which is not negligible. The Expected shortfall is equal to 

-40,6% and to -28,56% at the significant rate of 99%. When economics condition goes well, 

the return is high but when a crisis start, the return can fall drastically. Those bad effects are 

canceled with the option and the installation itself generate most of the time positive returns, 

negative returns are very exceptional and very small to be neglected. 

For the 4 scenarios the returns are: 

Distribution of Solar panel return 

Scenario 
Mean of 

annual return 
Sd of annual 

return 

A1 - Basis 19,84% 0,005636 

A2 - 
Brussels 30,45% 0,003291 

A3 - 
Wallonia 12,68% 0,003741 

A4 - 
Flanders 13,89% 0,005543 

 

Distribution of Stock exchange return 

Indice 
Mean of 

annual return 
Sd of annual 

return 

Eurostoxx 50 6,28% 0,222700 

S&P 500 9,20% 0,158600 
 

The following graphs show the details about the results obtained for the 4 scenarios. 

 
65 Data’s adjusted of dividends and extracted from yahoo finance on 21/05/2019 
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Brussels Region A2 
Mean: 2,24%/month 
Standard Deviation: 0,00095/month 
Kurtosis: -0,86 
Skewness: -0,29 

 
Var 99%: > 0% 
Expected Shortfall 
99%: 

> 0% 

 

Walloon Region A3 
Mean: 1%/month 
Standard Deviation: 0,00108/month 
Kurtosis: -1,30 
Skewness: -0,3763 

 
Var 99%: > 0% 
Expected Shortfall 
99%: 

> 0% 

 
Basis situation A1 

Mean: 1,52%/month 
Standard Deviation: 0,001627/month 
Kurtosis: -0,9768 
Skewness: -0,3917 

 
Var 99%: > 0% 
Expected Shortfall 
99%: 

> 0% 

 

Flanders Region A4 
Mean: 1,09%/month 
Standard Deviation: 0,0016/month 
Kurtosis: -0,9768 
Skewness: -0,3917 

 
Var 99%: > 0% 
Expected Shortfall 
99%: 

> 0% 
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c) Sensitivity analysis based on the LSM model 

Analyzing the influence of interest rate with value of 0,5%; 3% and 5%, it gives: 

Electricity price - Real Option Value 

R_int 0,5% 3,0% 5,0% 

A1    11.848,02 €       8.004,10 €       5.936,19 €  

A2    25.405,49 €     18.507,17 €     14.744,72 €  

A3      9.829,02 €       6.440,33 €       4.610,20 €  

A4      7.294,58 €       4.486,25 €       3.000,37 €  

Electricity price - Optimal ratio 

R_int 0,5% 3,0% 5,0% 

A1 3,02 2,37 2,02 

A2 5,66 4,49 3,83 

A3 2,62 2,04 1,73 

A4 2,11 1,62 1,35 

When the rate of interest increases, it contributes to reduce the value of the option which is 

not in line with the classical investment theory. Some cautious about the results on the option 

value is necessary as explained before, it means here that a higher interest reduces the NPV 

and by the same way the option value which is the NPV after 10 years. This conclusion is 

more logical from a theorical point of view. 

A kind of stress test has been used where it considers bad investments conditions: 

Investment cost trend: -5,5%/year; Prosumer tax in Wallonia: 120 instead of 78; Electricity 

trend of 2%/year; Electricity initial price of 180; Interest rate of 5%/year. 

For Wallonia, the mean of NPV at time 0 is still positive in those conditions with a value of 

997,91€ (sd: 2.667,87€). Profitability is resistant to hard context. 
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d) Impact of the results 

Impact on people 

 As shown with the results, the investment in solar panel is already profitable, some could 

wait to increase the total return, but it can mean waiting indefinitely. This investment allows by 

the same way to be protected of the increase of electricity price in the future which is a kind of 

additional insurance provided to the owner of a solar panel. One of the problems with this view 

is the necesity to have a minimal amount of money to pay the investment cost (with the salary or 

by savings) or to be able to contract a loan to finance this cost. It doesn’t generate difficulties 

for middle and high incomes (many banks provide attractive rate of 3% for green investment) 

but for low incomes, it represents a disadvantage if they have already reached a maximal level 

of indebtment (max 1/3 of the monthly income66 in Belgium) or if the banks don’t agree to grant 

this credit.  

 Energy cost on its side represents a fixed charge for the budget of a household, people 

with high incomes will not spend 2 times more money into the heating of their house than a low-

income household. It creates inequality as low incomes are forced to pay the growing electricity 

price while the high income can invest and earn high return with a protection on the energy price 

increase. Some measures of the state or the regions have been put in place to avoid this problem 

with, for example in Wallonia, a loan with a 0% rate67. Effectively, it contributes to facilitate 

the access to solar panel investment to a larger number of households, but a such installation 

doesn’t cover totally the electricity expenses as people are now incited to fit the installation size 

just below their consumption level to pay less Prosumer tax.  

Contracting a loan represents an additional monthly cost for the borrowers. It’s only when the 

regular payments will be equal or lower to the energy savings that low-income people could do 

a tradeoff to invest in this technology.  

 

Tradeoff strategy: Invest in solar panel and contract a 0% rate 
loan when: 

Regular monthly payments ≤ Monthly energy savings 

(151) 

 

With the inputs of the basis hypothesis: a loan of 6.500€ with a rate of 0% for 10 years, costs 

a monthly amount of 54,17€. The solar irradiance must be at least of 86 kWh/m² to cover the 

loan cost. Excepted in winter, this level is achieved most of the time. People even with the low 

income should invest to protect of the electricity price. 

 A barrier to an investment behavior in solar panel is simply the necessity to have a roof, 

it means to have a house or an apartment which can be difficult even for middle income as young 

peoples. If they rent something, the landlord doesn’t have an interest to install solar panel as the 

energy consumptions are at charged of the tenants.  

 Another problem is the investment horizon, the life of a solar panel is guaranted for 20 

years and could live 10 years more. It requires to avoid any move for 30 years which doesn’t 

 
66 https://www.wikifin.be/fr/thematiques/emprunter/credit-hypothecaire/comment-bien-choisir/combien-pouvez-
vous-emprunter, consulted on 21/05/2019 
67 https://www.wallonie.be/fr/actualites/prets-temperament-0-ecopack-et-renopack-fusionneront-en-2019, consulted on 

20/05/2019 

https://www.wikifin.be/fr/thematiques/emprunter/credit-hypothecaire/comment-bien-choisir/combien-pouvez-vous-emprunter
https://www.wikifin.be/fr/thematiques/emprunter/credit-hypothecaire/comment-bien-choisir/combien-pouvez-vous-emprunter
https://www.wallonie.be/fr/actualites/prets-temperament-0-ecopack-et-renopack-fusionneront-en-2019
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contribute people to invest if they expected it in a shorter horizon of time (larger house for the 

children for example).  

 A solution to those problems could result in a better information68 of the Belgian citizens 

by dedicated marketing campaign on the returns and savings resulting from this investment or 

on the possibilities of 0% loan. For the tenant, a new agreement can be passed where both 

parties benefits from the solar panel installation (stable energy cost for the tenants and gains 

for the landlord with the CV revenues). Real estate transactions could incorporate the actualized 

gains of solar panels to incite households who change of house every 10 years to invest. It have 

to be done in consultation with the regional decision level, the companies and the citizens.  

Impact on Planet 

 Investments in solar panel are a part of a sustainable economy which contribute to the 

energy transition. The profitability is higher than a stock exchange investment on the long term 

with lower risk. Most of the Value at Risk (VaR) and Expected Shortfall (ES) are positive. The 

returns are decorrelated with the financial exchanges. All those elements contribute to build a 

financial product that can play a role of diversification and by the same time improve 

sustainability rating of those products. Some could wait to have a bigger return, but it constitutes 

now a real alternative. One weak point that can be noted is the pollution induced at the end of 

life of the panels which need to be recycled to fully keep its benefits for the whole society. 

Impact on Prosperity 

 The profitability of a solar panel is high, for the situation A1 (basis) the annual return is 

about 14% and for the Brussels region, it’s 28%/year. Additionally, the risk is lower than an 

investment in an ETF. The returns are most of the time positive and don’t suffer of losses when a 

financial crisis appears. The returns are mainly linked to the solar irradiance which don’t varies 

across the time (excepted with the seasons) and electricity prices are sufficiently high to produce 

a minimum profitability in some regions the CV system provides even an additional cash-flows 

that almost multiplied the return by two. 

Impact on Governance 

 This model is useful to analyze the different policies applied in Belgium. The Brussels 

region is the most generous with the CV system, it considerably increases the profitability of the 

solar panel. On the other side Wallonia and Flanders use a Prosumer Tax which decreases the 

profitability but remains as high as 14% on average. The actual situation in 2019 in Wallonia 

is equivalent to the basis situation. With the Prosumer tax events, people hope to benefit from 

this tax regime for the whole life of the solar panel which is of course more profitable than the 

same situation with taxes. Even if it’s applied, it will provide a sufficient level of profitability and 

people would not have to be scared of the tax amount. 

Some calculus show that the maximal amount of Prosumer tax is: 

• Wallonia is 290€ / kWc (price trend of 3% and start at 260€) 

• Flanders about 270€/ kWc (price trend of 6% and start at 300€) or 181€/ kWc (price 

trend of 3% and start at 260€) 

 

 
68 Some systems exist already but need to be intensified. 



92 
 

Wallonia max Tax 290€ or 181€ 
 

 
Mean of NPV at time 0: 201,22 
Sd of NPV at time 0: 4.390,27 
Real option value: 2.461,09 
Optimal ratio: 1,07 

 

Flanders max Tax 270€ or 181€ 
(depend of scenario) 

 
Mean of NPV at time 0: 96,10 
Sd of NPV at time 0: 4848,02 
Real option value: 2704,80 
Optimal ratio: 1,13 

 

  

It’s a useful tool for the governments of the different regions to avoid fixing a level of tax that 

can destroy all the investments in this technology. No analysis of the optimal level of CV has 

been conducted as without this additional help, the situation is equivalent to the scenario A1 

which is largely profitable with a mean return of 19,8%. One precision must be made about the 

introduction of the Prosumer Tax in Wallonia. This series of events induces a high legal and 

political risk on the investments between 01/2019 and 04/2019. At the beginning of 2019, 

people were in the same condition than the scenario A1 (basis). With the announce of the 

introduction of a Prosumer Tax, people who invest just after the 07/2019 would be taxed as in 

the scenario A3. The difference of return can easily be compared with the simulation. 
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With the graph, a significant difference (2.210,53€) of mean in NPV at time 0 appears. It leads 

to a run to invest from the householders to avoid losing this amount. With the multiple events in 

the Walloon political world, this difference represents the cost of the uncertainty or the cost of 

a probable tax as it’s equal to the actualized value of the probable tax outflows. 

 People need more stability and transparency with the political decisions that influence 

their investment decisions, for the solar panel it represents the largest risk as solar irradiance 

and electricity price are less volatile and more predictable that governments actions. It can be 

proved by the influence of the subsidy or tax regime: Brussels with a CV regime (return  

28%/year) could switch to a Prosumer Tax situation (return 11%/year), the impact would be a 

run to invest before the effective change to gain an annual return twice larger than the situation 

after the tax introduction. 

 

e) Next research opportunities 

Next researches could be focused on a solar panel installation in another country of Europe to 

analyze the local legislation, subsidy or tax system that can be applied. Some countries with a 

high solar irradiance as Spain or Portugal could achieve similar profitability (or more) if the cost 

of energy is sufficiently high. About the LSM algorithm, it could be improved by using a better 

holding value function that forecast more smarter the option value or extended to other kinds of 

investment project. Finally, a genetic algorithm could test the level of an optimal ratio of 

investment among multiple scenarios. 
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f) Final thoughts 

To summarize all the conclusions of the research, both optimal choices are presented with the 

situation in Belgium at the beginning of 2019: 

▪ Wait as long as you want and get a higher profit when the investment is done 

▪ Invest now and earn the profits during the life of the installation and reinvest it to 

earn more profit with the electricity price increase and investment cost decrease. 

In the perspective of the energy transition and fight against the climate change, the second 

option could be better.  

 

A comment about the different series of events: 

▪ If the government announces a subsidy increase or a tax decrease: wait the effective 

change to earn more 

▪ If the government announces a tax introduction, a subsidy decrease or a subsidy 

cancellation: invest now and hope that the change will never takes place even it’s too 

optimistic 

Example:  

In 05/2019 when general elections happen in Belgium, the best choice could be: 

▪ If a party announces a decrease of VAT on ecological investment:  

Wait the effective legislative change to buy the solar panel and avoid paying 21% 

instead of 6% VAT on the investment. It represents an immediate gain of 805,79€ 

(on an investment cost of 6500€ included of 21% VAT). 

▪ If you think that the new majority in Wallonia will not introduce the Prosumer Tax:  

Invest now, you can gain an actualized amount of 2.210,53€ 

▪ If you think that the new majority in Wallonia will introduce the Prosumer Tax:  

Invest now and gain a cash-flows of 6 months not taxed (if invest in June) 

 

Where invest in solar panel? 

Flemish region has the highest prosumer tax, which is compensated with the highest electricity 

price, it gives an annual return of 12%. 

Wallonia will have a probable prosumer tax and yield in this case an annual return of 11% 

as the electricity price are lower than in Flanders. 

Brussels provides CV’s which contribute to an annual return of 28%, the system is not 

supposed to stop as the granted number of CV is more stable and controlled than the 

situation in Wallonia in 2008. It’s not impossible that the system will stop one day, in this case 

it will provide an annual return of 19,8%. 

 

A bit of Belgian surrealism: 

With the return in Brussels region, why don’t convert a national 

monument69 into a giant solar panel? 

 

It could rapidly pay off. 

 
69 Image from: https://fr.wikipedia.org/wiki/Fichier:Belgium-6430B_-_Atomium_(14141441443).jpg, consulted 
on 21/05/2019 

https://fr.wikipedia.org/wiki/Fichier:Belgium-6430B_-_Atomium_(14141441443).jpg
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IV. Conclusion 

 

 The solar panels in Belgium suffer of a high uncertainty about the political decisions, 

especially in Wallonia. Data’s reveal that investors wait to know the final regime of Tax or 

subsidies before investing. Real options are suited for this case. Historical rentability provided a 

return higher than 15% for a lower risk than a stock exchange market as most of the risk is 

based on the solar irradiance which is more predictable than the political decisions.  

 Based on a situation on the 01/01/2019, 3 models have been considered. The first 

advice is to wait but the results could not be correct as it doesn’t consider the strong decrease of 

investment cost (-11%/year). The second model could not provide an analytical solution as no 

convergence is possible for this problem, again mainly due to the trend of investment cost and 

decorrelation of electricity price with the market. This missing solution could be interpreted as a 

signal to invest now. Waiting indefinitely produces higher profits. The third model was based on 

an LSM algorithm which produces a positive eternal option value. It means waiting the end of 

the option maturity (10 years) and the optimal solution is again waiting. To compare the results 

with a previous research [25], investment conditions in Belgium in 2019 are more favorable than 

the situation in China in 2016 as Belgian electricity prices are higher. 

Analyzing the return of a solar panel installation with the EuroStoxx 50 and S&P500, the first 

one produces higher profits. Invest now constitutes also an alternative. 

Distribution of Solar panel return 

Scenario 
Mean of 

annual return 
Sd of annual 

return 

A1 - Basis 19,84% 0,005636 

A2 - 
Brussels 30,45% 0,003291 

A3 - 
Wallonia 12,68% 0,003741 

A4 - 
Flanders 13,89% 0,005543 

 

Distribution of Stock exchange return 

Indice 
Mean of 

annual return 
Sd of annual 

return 

Eurostoxx 50 6,28% 0,222700 

S&P 500 9,20% 0,158600 
 

 

To summarize the answer to the question:  

When it will be optimal to invest in solar panel in Belgium? 

 

If the investor wants to rapidly earn profits from the solar panel and be protected of electricity 

price increase, invest now. If the investor wants a bigger profit than the results of the table 

above, wait but with the risk of legal changes that could deter the level of return. 

 

 This research could be extended to solar panel installations in countries with a higher 

solar irradiance rate or with different subsidy regimes, which should influence the total 

profitability and the investment decisions. 
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Annexes 

Created by Valepin Rémi – R Code of the LSM model 

Master Thesis: Least-Square Monte Carlo applied to a solar panel investment in Belgium, starting datum 

01/01/2019 

The function 

The function generates a data-frame with the results where Real Option Value of the process and Optimal 

ratio of investment is summarized with the function "Test_summary" 

The function generates Inf error messages, it's normal for the paths without activation of the option. 

In [2]: 

# Activate twice 

library(FinancialMath) 

library(zoo) 

library(xts) 

library(PerformanceAnalytics) 

In [3]: 

LSM_solar_belgium <- function(Year = 10, Period = 12, N_sim = 10, Life_y_installation = 20,  

                              Elec_price_start = 260, Elec_trend_yearly = 0.03, Interest_rate_yearly = 0.03) { 

    ### Initialize values    
    Core_data         <- array(0,dim=c((Year+Life_y_installation)*Period,87,N_sim)) # 01 
    #E                <- array(0,dim=c(n*T,1,sim)) # 02 
    #Q                <- array(0,dim=c(n*T,1,sim)) # 03 
    #CV               <- array(0,dim=c(n*T,1,sim)) # 04 
    #PRO_WL           <- array(0,dim=c(n*T,1,sim)) # 05 
    #PRO_FL           <- array(0,dim=c(n*T,1,sim)) # 06 
    #I                <- array(0,dim=c(n*T,1,sim)) # 07 
    #Flow_A1          <- array(0,dim=c(n*T,1,sim)) # 08 
    #Flow_A2          <- array(0,dim=c(n*T,1,sim)) # 09 
    #Flow_A3          <- array(0,dim=c(n*T,1,sim)) # 10 
    #Flow_A4          <- array(0,dim=c(n*T,1,sim)) # 11 
    #Present_value_A1 <- array(0,dim=c(n*T,1,sim)) # 12 
    #Present_value_A2 <- array(0,dim=c(n*T,1,sim)) # 13 
    #Present_value_A3 <- array(0,dim=c(n*T,1,sim)) # 14 
    #Present_value_A4 <- array(0,dim=c(n*T,1,sim)) # 15 
    #Present_value_A5 <- array(0,dim=c(n*T,1,sim)) # 16 
    #Horizon_t        <- array(0,dim=c(n*T,1,sim)) # 17 
    #PV_I_A1          <- array(0,dim=c(n*T,1,sim)) # 18 
    #PV_I_A2          <- array(0,dim=c(n*T,1,sim)) # 19 
    #PV_I_A3          <- array(0,dim=c(n*T,1,sim)) # 20 
    #PV_I_A4          <- array(0,dim=c(n*T,1,sim)) # 21 
    #PV_I_A5          <- array(0,dim=c(n*T,1,sim)) # 22 
    #PV_I_Best_A1     <- array(0,dim=c(n*T,1,sim)) # 23 
    #PV_I_Best_A2     <- array(0,dim=c(n*T,1,sim)) # 24 
    #PV_I_Best_A3     <- array(0,dim=c(n*T,1,sim)) # 25 
    #PV_I_Best_A4     <- array(0,dim=c(n*T,1,sim)) # 26 
    #PV_I_Best_A5     <- array(0,dim=c(n*T,1,sim)) # 27 
    #PV_I_A1_ratio    <- array(0,dim=c(n*T,1,sim)) # 28 
    #PV_I_A2_ratio    <- array(0,dim=c(n*T,1,sim)) # 29 
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    #PV_I_A3_ratio    <- array(0,dim=c(n*T,1,sim)) # 30 
    #PV_I_A4_ratio    <- array(0,dim=c(n*T,1,sim)) # 31 
    #PV_I_A5_ratio    <- array(0,dim=c(n*T,1,sim)) # 32 
    #Actu_PV_best_A1  <- array(0,dim=c(n*T,1,sim)) # 33 
    #Actu_PV_best_A2  <- array(0,dim=c(n*T,1,sim)) # 34 
    #Actu_PV_best_A3  <- array(0,dim=c(n*T,1,sim)) # 35 
    #Actu_PV_best_A4  <- array(0,dim=c(n*T,1,sim)) # 36 
    #Actu_PV_best_A5  <- array(0,dim=c(n*T,1,sim)) # 37 
    #Pay_off_A1       <- array(0,dim=c(n*T,1,sim)) # 38 
    #Pay_off_A2       <- array(0,dim=c(n*T,1,sim)) # 39 
    #Pay_off_A3       <- array(0,dim=c(n*T,1,sim)) # 40 
    #Pay_off_A4       <- array(0,dim=c(n*T,1,sim)) # 41 
    #Pay_off_A5       <- array(0,dim=c(n*T,1,sim)) # 42 
    #Conti_value_A1   <- array(0,dim=c(n*T,1,sim)) # 43 
    #Conti_value_A2   <- array(0,dim=c(n*T,1,sim)) # 44 
    #Conti_value_A3   <- array(0,dim=c(n*T,1,sim)) # 45 
    #Conti_value_A4   <- array(0,dim=c(n*T,1,sim)) # 46 
    #Conti_value_A5   <- array(0,dim=c(n*T,1,sim)) # 47 
    #Dummy_info_A1    <- array(0,dim=c(n*T,1,sim)) # 48 
    #Dummy_info_A2    <- array(0,dim=c(n*T,1,sim)) # 49 
    #Dummy_info_A3    <- array(0,dim=c(n*T,1,sim)) # 50 
    #Dummy_info_A4    <- array(0,dim=c(n*T,1,sim)) # 51 
    #Dummy_info_A5    <- array(0,dim=c(n*T,1,sim)) # 52 
    #Dummy_min_A1     <- array(0,dim=c(n*T,1,sim)) # 53 
    #Dummy_min_A2     <- array(0,dim=c(n*T,1,sim)) # 54 
    #Dummy_min_A3     <- array(0,dim=c(n*T,1,sim)) # 55 
    #Dummy_min_A4     <- array(0,dim=c(n*T,1,sim)) # 56 
    #Dummy_min_A5     <- array(0,dim=c(n*T,1,sim)) # 57 
    #Best_payoff_A1   <- array(0,dim=c(n*T,1,sim)) # 58 
    #Best_payoff_A2   <- array(0,dim=c(n*T,1,sim)) # 59 
    #Best_payoff_A3   <- array(0,dim=c(n*T,1,sim)) # 60 
    #Best_payoff_A4   <- array(0,dim=c(n*T,1,sim)) # 61 
    #Best_payoff_A5   <- array(0,dim=c(n*T,1,sim)) # 62 
    #ROV_brut_A1      <- array(0,dim=c(n*T,1,sim)) # 63 
    #ROV_brut_A2      <- array(0,dim=c(n*T,1,sim)) # 64 
    #ROV_brut_A3      <- array(0,dim=c(n*T,1,sim)) # 65 
    #ROV_brut_A4      <- array(0,dim=c(n*T,1,sim)) # 66 
    #ROV_brut_A5      <- array(0,dim=c(n*T,1,sim)) # 67 
    #Rolling_mean_A1  <- array(0,dim=c(n*T,1,sim)) # 68 
    #Rolling_mean_A2  <- array(0,dim=c(n*T,1,sim)) # 69 
    #Rolling_mean_A3  <- array(0,dim=c(n*T,1,sim)) # 70 
    #Rolling_mean_A4  <- array(0,dim=c(n*T,1,sim)) # 71 
    #Rolling_mean_A5  <- array(0,dim=c(n*T,1,sim)) # 72 
    #ROV_brut_rat_A1  <- array(0,dim=c(n*T,1,sim)) # 73 
    #ROV_brut_rat_A2  <- array(0,dim=c(n*T,1,sim)) # 74 
    #ROV_brut_rat_A3  <- array(0,dim=c(n*T,1,sim)) # 75 
    #ROV_brut_rat_A4  <- array(0,dim=c(n*T,1,sim)) # 76 
    #ROV_brut_rat_A5  <- array(0,dim=c(n*T,1,sim)) # 77 
    #ROV_ratio_A1     <- array(0,dim=c(n*T,1,sim)) # 78 
    #ROV_ratio_A2     <- array(0,dim=c(n*T,1,sim)) # 79 
    #ROV_ratio_A3     <- array(0,dim=c(n*T,1,sim)) # 80 
    #ROV_ratio_A4     <- array(0,dim=c(n*T,1,sim)) # 81 
    #ROV_ratio_A5     <- array(0,dim=c(n*T,1,sim)) # 82 
    #ROV_ratio_rm_A1  <- array(0,dim=c(n*T,1,sim)) # 83 
    #ROV_ratio_rm_A2  <- array(0,dim=c(n*T,1,sim)) # 84 
    #ROV_ratio_rm_A3  <- array(0,dim=c(n*T,1,sim)) # 85 
    #ROV_ratio_rm_A4  <- array(0,dim=c(n*T,1,sim)) # 86 
    #ROV_ratio_rm_A5  <- array(0,dim=c(n*T,1,sim)) # 87 
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    dt           <- 1/Period 
    Power        <- 3 # expressed in kWc 
    CV_granting  <- 3 # by 1000 kWh 
     
    E_start      <- Elec_price_start 
    Q_start      <- 104.96 
    CV_start     <- 96  
    PRO_WL_start <- 78 *Power*(1-0.3736) #78 
    PRO_FL_start <- 110 *Power #110 
    I_start      <- 6500 
     
    E_alpha      <- Elec_trend_yearly 
    Q_alpha      <- 0.005 
    CV_alpha     <- 0.003 
    PRO_WL_alpha <- 0.00 
    PRO_FL_alpha <- 0.00 
    I_alpha      <- -0.115 #-0.115 
     
    E_sd         <- 0.2 
    Q_sd         <- 126.27 
    Q_mean       <- 104.96 
    Q_return     <- 3.1033 
    CV_sd        <- 0.03 
    PRO_WL_sd    <- 0.0 
    PRO_FL_sd    <- 0.0 
    I_sd         <- 0.075  
     
     
     
    Maintenance  <- 0.0075*I_start 
    Loss_factor  <- 0.005 
    Inverter_cost<- 250 
     
    R_int        <- (1+Interest_rate_yearly)^(dt)-1 
    R_adjust     <- 0.00 
    R_M_int      <- 0.003928+ R_adjust 
    R_M_sd       <- 0.018 
 
    Corr_E_M     <- -0.04 
    Corr_I_M     <-  0.32 
    Corr_CV_M    <-  0.175 
     
    E_crol       <- R_int + ((R_M_int-R_int)/R_M_sd)*E_sd *Corr_E_M  - E_alpha 
    CV_crol      <- R_int + ((R_M_int-R_int)/R_M_sd)*CV_sd*Corr_CV_M - CV_alpha 
    I_crol       <- R_int + ((R_M_int-R_int)/R_M_sd)*I_sd *Corr_I_M  - I_alpha 
     
    ### First period set 
    Core_data[1,1,] <- 1 
    Core_data[1,2,] <- E_start 
    Core_data[1,3,] <- Q_start 
    Core_data[1,4,] <- CV_start 
    Core_data[1,5,] <- PRO_WL_start 
    Core_data[1,6,] <- PRO_FL_start 
    Core_data[1,7,] <- I_start 
     
    ### Set valuation's rules 
     
    # Reminder 
    # Flow[1] <- P[1]*Q[1] - A1*(PRO[1]*Q[1]) - A2*PRO_FL - Maintenance + A3*Qualiwatt + 
A4*(CV[1]*Q[1]) + A5*Other_subsidy 
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    # A1 
    Core_data[1,8,]  <- Core_data[1,2,]*Core_data[1,3,]*3*0.86/1000 - Maintenance*dt  
    # A2 
    Core_data[1,9,]  <- Core_data[1,2,]*Core_data[1,3,]*3*0.86/1000 - Maintenance*dt + 
3*Core_data[1,4,]*Core_data[1,3,]*3*0.86/1000 
    # A3 
    Core_data[1,10,] <- Core_data[1,2,]*Core_data[1,3,]*3*0.86/1000 - Maintenance*dt - 
Core_data[1,5,]*dt 
    # A4 
    Core_data[1,11,] <- Core_data[1,2,]*Core_data[1,3,]*3*0.86/1000 - Maintenance*dt - 
Core_data[1,6,]*dt 
    # Time max 
    Core_data[1,17,] <- Life_y_installation*Period 
     
    for (j in seq(from= 1, to = N_sim, by = 1) ) { 
         
    ### Set Paths of the variables 
     
      for (i in seq(from= 2, to = ((Year+Life_y_installation)*Period), by = 1) ) { 
           
        # Time    
        Core_data[i,1,j]  = Core_data[i-1,1,j] + 1 
        # BM E 
        #Core_data[i,2,j]  = Core_data[i-1,2,j] * exp(((E_alpha-((E_sd)^(2))/2)*dt)+E_sd*sqrt(dt)*rnorm(1,0)) 
        Core_data[i,2,j]  = Core_data[i-1,2,j] + ((Core_data[i-1,2,j] *E_alpha  *dt)) + (Core_data[i-1,2,j] 
*E_sd  *sqrt(dt)*rnorm(1,0)) 
        Core_data[i,2,j]  = min(max(Core_data[i,2,j],180),700) 
        # BM Q 
        Core_data[i,3,j]  = Core_data[i-1,3,j] + ((Q_mean-Core_data[i-1,3,j])*Q_return*dt) + (Q_sd  
*sqrt(dt)*rnorm(1,0)) 
        Core_data[i,3,j]  = min(max(Core_data[i,3,j],20),200) 
        # BM CV 
        Core_data[i,4,j]  = Core_data[i-1,4,j] + ((Core_data[i-1,4,j] *CV_alpha *dt)) + (Core_data[i-1,4,j] 
*CV_sd *sqrt(dt)*rnorm(1,0)) 
        #Core_data[i,4,j]  = Core_data[i-1,4,j] * exp(((CV_alpha-
((CV_sd)^(2))/2)*dt)+CV_sd*sqrt(dt)*rnorm(1,0)) 
        Core_data[i,4,j]  = min(max(65, Core_data[i,4,j]),100) 
        # BM PRO_WL 
        Core_data[i,5,j]  = Core_data[i-1,5,j] + ((Core_data[i-1,5,j] *PRO_WL_alpha*dt))  
        # BM PRO_FL 
        Core_data[i,6,j]  = Core_data[i-1,6,j] + ((Core_data[i-1,6,j] *PRO_FL_alpha*dt))  
        # BM I  
        Core_data[i,7,j]  = Core_data[i-1,7,j] + ((Core_data[i-1,7,j]*I_alpha  *dt)) + (Core_data[i-1,7,j]*I_sd  
*sqrt(dt)*rnorm(1,0)) 
        #Core_data[i,7,j]  = Core_data[i-1,7,j] * exp(((I_alpha-((I_sd)^(2))/2)*dt)+I_sd*sqrt(dt)*rnorm(1,0)) 
        Core_data[i,7,j]  = min(max(Core_data[i,7,j],500),7000) 
           
        # Set A1 
        Core_data[i,8,j]  = Core_data[i,2,j]*Core_data[i,3,j]*3*0.86/1000*(1-
Loss_factor*Core_data[i,1,j]*dt) - Maintenance*dt 
        #Core_data[i,8,j]  = (Core_data[i,2,j]*(Core_data[i,3,j])*(1-Loss_factor*Core_data[i,1,j]*dt)) - 
Maintenance*dt 
         
        # Set A2 
        Core_data[i,9,j]  = Core_data[i,2,j]*Core_data[i,3,j]*3*0.86/1000*(1-
Loss_factor*Core_data[i,1,j]*dt) - Maintenance*dt + 3*Core_data[i,4,j]*Core_data[i,3,j]*3*0.86/1000 
        # Set A3 
        Core_data[i,10,j] = Core_data[i,2,j]*Core_data[i,3,j]*3*0.86/1000*(1-
Loss_factor*Core_data[i,1,j]*dt) - Maintenance*dt - Core_data[i,5,j]*dt 
        # Set A4 
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        Core_data[i,11,j] = Core_data[i,2,j]*Core_data[i,3,j]*3*0.86/1000*(1-
Loss_factor*Core_data[i,1,j]*dt) - Maintenance*dt - Core_data[i,6,j]*dt 
     
        # Set A1 
        Core_data[i,17,j] = min(Core_data[i,1,j]+(Life_y_installation*Period), 
((Year+Life_y_installation)*Period)) 
      } 
     
     ### Set Present Value of Flow 
      for (i in seq(from= 1, to = (Year+Life_y_installation)*Period, by = 1) ) { 
         # PV A1 
         Core_data[i,12,j] = NPV(0,Core_data[i:Core_data[i,17,j],8,j],seq(from=1, to= 
length(Core_data[i:Core_data[i,17,j],8,j]),  by = 1), R_int)-Inverter_cost*1/(1+R_int)^(120) 
         # PV A2 
         Core_data[i,13,j] = NPV(0,Core_data[i:Core_data[i,17,j],9,j],seq(from=1, to= 
length(Core_data[i:Core_data[i,17,j],9,j]),  by = 1), R_int)-Inverter_cost*1/(1+R_int)^(120) 
         # PV A3 
         Core_data[i,14,j] = NPV(0,Core_data[i:Core_data[i,17,j],10,j],seq(from=1, to= 
length(Core_data[i:Core_data[i,17,j],10,j]),  by = 1), R_int)-Inverter_cost*1/(1+R_int)^(120) 
         # PV A4 
         Core_data[i,15,j] = NPV(0,Core_data[i:Core_data[i,17,j],11,j],seq(from=1, to= 
length(Core_data[i:Core_data[i,17,j],11,j]), by = 1), R_int)-Inverter_cost*1/(1+R_int)^(120) 
          
         # NPV A1  
         Core_data[i,18,j] = Core_data[i,12,j] - Core_data[i,7,j] 
         # NPV A2  
         Core_data[i,19,j] = Core_data[i,13,j] - Core_data[i,7,j] 
         # NPV A3  
         Core_data[i,20,j] = Core_data[i,14,j] - Core_data[i,7,j] 
         # NPV A4  
         Core_data[i,21,j] = Core_data[i,15,j] - Core_data[i,7,j] 
          
         # Termination value A1 
         Core_data[i,23,j] = max(Core_data[i,18,j], 0) 
         # Termination value A2 
         Core_data[i,24,j] = max(Core_data[i,19,j], 0) 
         # Termination value A3   
         Core_data[i,25,j] = max(Core_data[i,20,j], 0) 
         # Termination value A4   
         Core_data[i,26,j] = max(Core_data[i,21,j], 0) 
 
         # Invest ratio A1 
         Core_data[i,28,j] = Core_data[i,12,j]/Core_data[i,7,j] 
         # Invest ratio A2 
         Core_data[i,29,j] = Core_data[i,13,j]/Core_data[i,7,j] 
         # Invest ratio A3 
         Core_data[i,30,j] = Core_data[i,14,j]/Core_data[i,7,j] 
         # Invest ratio A4 
         Core_data[i,31,j] = Core_data[i,15,j]/Core_data[i,7,j] 
 
     } 
        
        # Termination value A1 
         Core_data[121,23,j] = 0 
         # Termination value A2 
         Core_data[121,24,j] = 0 
         # Termination value A3   
         Core_data[121,25,j] = 0 
         # Termination value A4   
         Core_data[121,26,j] = 0 
    } 
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    ### Set Roll-back value 
    for (i in seq(from= (((Year+Life_y_installation)*Period)), to = 1, by = -1) ) { 
         
        for (j in seq(from= 1, to = N_sim, by = 1) ) { 
            Core_data[i,33,j] = Core_data[i,23,j] * 1/(1+R_int) 
            Core_data[i,34,j] = Core_data[i,24,j] * 1/(1+R_int) 
            Core_data[i,35,j] = Core_data[i,25,j] * 1/(1+R_int) 
            Core_data[i,36,j] = Core_data[i,26,j] * 1/(1+R_int) 
        } 
    } 
     
    ### Set again terminal payoff of the option 
    for (j in seq(from= 1, to = N_sim, by = 1) ) { 
         Core_data[((Year)*Period),38,j] = Core_data[((Year)*Period),23,j] 
         Core_data[((Year)*Period),39,j] = Core_data[((Year)*Period),24,j] 
         Core_data[((Year)*Period),40,j] = Core_data[((Year)*Period),25,j] 
         Core_data[((Year)*Period),41,j] = Core_data[((Year)*Period),26,j] 
    } 
     
    ### Compute expectations through linear regression 
    for (i in seq(from= ((Year)*Period), to = 2, by = -1) ) { 
         
        #V_E  <- Core_data[i,2,] 
        #V_Q  <- Core_data[i,3,] 
        #V_CV <- Core_data[i,4,] 
        #V_I  <- Core_data[i,7,] 
         
        #fit_A1 = 
lm(Core_data[i,33,]~V_E+I(V_E^2)+V_Q+I(V_Q^2)+V_I+I(V_I^2)+I(V_E*V_Q)+I(V_E*V_I)+I(V_Q*V_I)) 
        #fit_A2 = 
lm(Core_data[i,33,]~V_E+I(V_E^2)+V_Q+I(V_Q^2)+V_I+I(V_I^2)+I(V_E*V_Q)+I(V_E*V_I)+I(V_Q*V_I)+V
_CV+I(V_CV^2)+I(V_E*V_CV)+I(V_Q*V_CV)+I(V_I*V_CV))            
        #fit_A3 = 
lm(Core_data[i,33,]~V_E+I(V_E^2)+V_Q+I(V_Q^2)+V_I+I(V_I^2)+I(V_E*V_Q)+I(V_E*V_I)+I(V_Q*V_I)+C
ore_data[i,5,j]) 
        #fit_A4 = 
lm(Core_data[i,33,]~V_E+I(V_E^2)+V_Q+I(V_Q^2)+V_I+I(V_I^2)+I(V_E*V_Q)+I(V_E*V_I)+I(V_Q*V_I)+C
ore_data[i,6,j]) 
                           
      fit_A1 = 
lm(Core_data[i,33,]~Core_data[i,2,]+I(Core_data[i,2,]^2)+Core_data[i,3,]+I(Core_data[i,3,]^2)+Core_dat
a[i,7,]+I(Core_data[i,7,]^2)+I(Core_data[i,2,]*Core_data[i,3,])+I(Core_data[i,2,]*Core_data[i,7,])+I(Core_
data[i,3,]*Core_data[i,7,])) 
      fit_A2 = 
lm(Core_data[i,34,]~Core_data[i,2,]+I(Core_data[i,2,]^2)+Core_data[i,3,]+I(Core_data[i,3,]^2)+Core_dat
a[i,7,]+I(Core_data[i,7,]^2)+I(Core_data[i,2,]*Core_data[i,3,])+I(Core_data[i,2,]*Core_data[i,7,])+I(Core_
data[i,3,]*Core_data[i,7,])+Core_data[i,4,]+I(Core_data[i,4,]^2)+I(Core_data[i,2,]*Core_data[i,4,])+I(Core
_data[i,3,]*Core_data[i,4,])+I(Core_data[i,7,]*Core_data[i,4,])) 
      fit_A3 = 
lm(Core_data[i,35,]~Core_data[i,2,]+I(Core_data[i,2,]^2)+Core_data[i,3,]+I(Core_data[i,3,]^2)+Core_dat
a[i,7,]+I(Core_data[i,7,]^2)+I(Core_data[i,2,]*Core_data[i,3,])+I(Core_data[i,2,]*Core_data[i,7,])+I(Core_
data[i,3,]*Core_data[i,7,])) 
      fit_A4 = 
lm(Core_data[i,36,]~Core_data[i,2,]+I(Core_data[i,2,]^2)+Core_data[i,3,]+I(Core_data[i,3,]^2)+Core_dat
a[i,7,]+I(Core_data[i,7,]^2)+I(Core_data[i,2,]*Core_data[i,3,])+I(Core_data[i,2,]*Core_data[i,7,])+I(Core_
data[i,3,]*Core_data[i,7,])) 
         
         
        for (j in seq(from= 1, to = N_sim, by = 1) ) { 
             
            fit_value_A1 <- as.numeric( 
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                                     fit_A1$coefficients[1]*1  
                                    +fit_A1$coefficients[2]*Core_data[i,2,j] 
                                    +fit_A1$coefficients[3]*Core_data[i,2,j]^(2) 
                                    +fit_A1$coefficients[4]*Core_data[i,3,j] 
                                    +fit_A1$coefficients[5]*Core_data[i,3,j]^(2) 
                                    +fit_A1$coefficients[6]*Core_data[i,7,j] 
                                    +fit_A1$coefficients[7]*Core_data[i,7,j]^(2) 
                                    +fit_A1$coefficients[8]*Core_data[i,2,j]*Core_data[i,3,j] 
                                    +fit_A1$coefficients[9]*Core_data[i,2,j]*Core_data[i,7,j] 
                                    +fit_A1$coefficients[10]*Core_data[i,3,j]*Core_data[i,7,j] 
                                   ) 
             
            fit_value_A2 <- as.numeric( 
                                     fit_A2$coefficients[1]*1  
                                    +fit_A2$coefficients[2]*Core_data[i,2,j] 
                                    +fit_A2$coefficients[3]*Core_data[i,2,j]^(2) 
                                    +fit_A2$coefficients[4]*Core_data[i,3,j] 
                                    +fit_A2$coefficients[5]*Core_data[i,3,j]^(2) 
                                    +fit_A2$coefficients[6]*Core_data[i,7,j] 
                                    +fit_A2$coefficients[7]*Core_data[i,7,j]^(2) 
                                    +fit_A2$coefficients[8]*Core_data[i,2,j]*Core_data[i,3,j] 
                                    +fit_A2$coefficients[9]*Core_data[i,2,j]*Core_data[i,7,j] 
                                    +fit_A2$coefficients[10]*Core_data[i,3,j]*Core_data[i,7,j] 
                                    +fit_A2$coefficients[11]*Core_data[i,4,j] 
                                    +fit_A2$coefficients[12]*Core_data[i,4,j]^(2) 
                                    +fit_A2$coefficients[13]*Core_data[i,4,j]*Core_data[i,2,j] 
                                    +fit_A2$coefficients[14]*Core_data[i,4,j]*Core_data[i,3,j] 
                                    +fit_A2$coefficients[15]*Core_data[i,4,j]*Core_data[i,7,j] 
                                   ) 
             
            fit_value_A3 <- as.numeric( 
                                     fit_A3$coefficients[1]*1  
                                    +fit_A3$coefficients[2]*Core_data[i,2,j] 
                                    +fit_A3$coefficients[3]*Core_data[i,2,j]^(2) 
                                    +fit_A3$coefficients[4]*Core_data[i,3,j] 
                                    +fit_A3$coefficients[5]*Core_data[i,3,j]^(2) 
                                    +fit_A3$coefficients[6]*Core_data[i,7,j] 
                                    +fit_A3$coefficients[7]*Core_data[i,7,j]^(2) 
                                    +fit_A3$coefficients[8]*Core_data[i,2,j]*Core_data[i,3,j] 
                                    +fit_A3$coefficients[9]*Core_data[i,2,j]*Core_data[i,7,j] 
                                    +fit_A3$coefficients[10]*Core_data[i,3,j]*Core_data[i,7,j] 
                                   ) 
             
            fit_value_A4 <- as.numeric( 
                                     fit_A4$coefficients[1]*1  
                                    +fit_A4$coefficients[2]*Core_data[i,2,j] 
                                    +fit_A4$coefficients[3]*Core_data[i,2,j]^(2) 
                                    +fit_A4$coefficients[4]*Core_data[i,3,j] 
                                    +fit_A4$coefficients[5]*Core_data[i,3,j]^(2) 
                                    +fit_A4$coefficients[6]*Core_data[i,7,j] 
                                    +fit_A4$coefficients[7]*Core_data[i,7,j]^(2) 
                                    +fit_A4$coefficients[8]*Core_data[i,2,j]*Core_data[i,3,j] 
                                    +fit_A4$coefficients[9]*Core_data[i,2,j]*Core_data[i,7,j] 
                                    +fit_A4$coefficients[10]*Core_data[i,3,j]*Core_data[i,7,j] 
                                   ) 
             
             
    ### Set Continuation value at each instant t             
            Core_data[i,43,j] = max(as.numeric(fit_value_A1),0) 
            Core_data[i,44,j] = max(as.numeric(fit_value_A2),0) 
            Core_data[i,45,j] = max(as.numeric(fit_value_A3),0) 
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            Core_data[i,46,j] = max(as.numeric(fit_value_A4),0) 
             
    ### Choose best payoff between activation or continuation value          
            Core_data[i,38,j] = max(Core_data[i,23,j], Core_data[i,43,j]) 
            Core_data[i,39,j] = max(Core_data[i,24,j], Core_data[i,44,j]) 
            Core_data[i,40,j] = max(Core_data[i,25,j], Core_data[i,45,j]) 
            Core_data[i,41,j] = max(Core_data[i,26,j], Core_data[i,46,j]) 
             
    ### Dummy variable for this choice         
            # Dummy A1 
            if (Core_data[i,23,j] >= Core_data[i,43,j]) { 
               Core_data[i,48,j] = 1 
            } 
            else { 
               Core_data[i,48,j] = 0 
            } 
            # Dummy A2 
            if (Core_data[i,24,j] >= Core_data[i,44,j]) { 
               Core_data[i,49,j] = 1 
            } 
            else { 
               Core_data[i,49,j] = 0 
            } 
            # Dummy A3 
            if (Core_data[i,25,j] >= Core_data[i,45,j]) { 
               Core_data[i,50,j] = 1 
            } 
            else { 
               Core_data[i,50,j] = 0 
            } 
            # Dummy A4 
            if (Core_data[i,26,j] >= Core_data[i,46,j]) { 
               Core_data[i,51,j] = 1 
            } 
            else { 
               Core_data[i,51,j] = 0 
            } 
        } 
    } 
     
    ### Determine best time and payoff 
     
    for (j in seq(from= 1, to = N_sim, by = 1) ) { 
        Core_data[1,53,j] = if (is.infinite(min(which(Core_data[,48,j]==1)))) { 0 } else { 
min(which(Core_data[,48,j]==1)) } 
        Core_data[1,54,j] = if (is.infinite(min(which(Core_data[,49,j]==1)))) { 0 } else { 
min(which(Core_data[,48,j]==1)) } 
        Core_data[1,55,j] = if (is.infinite(min(which(Core_data[,50,j]==1)))) { 0 } else { 
min(which(Core_data[,48,j]==1)) } 
        Core_data[1,56,j] = if (is.infinite(min(which(Core_data[,51,j]==1)))) { 0 } else { 
min(which(Core_data[,48,j]==1)) }    
    } 
     
    for (j in seq(from= 1, to = N_sim, by = 1) ) { 
        Core_data[1,58,j] = if (Core_data[1,53,j]==0) { 0 } else { 
Core_data[Core_data[1,53,j],38,j]*1/(1+R_int)^(Core_data[1,53,j]) }  
        Core_data[1,59,j] = if (Core_data[1,54,j]==0) { 0 } else { 
Core_data[Core_data[1,54,j],39,j]*1/(1+R_int)^(Core_data[1,54,j]) } 
        Core_data[1,60,j] = if (Core_data[1,55,j]==0) { 0 } else { 
Core_data[Core_data[1,55,j],40,j]*1/(1+R_int)^(Core_data[1,55,j]) } 
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        Core_data[1,61,j] = if (Core_data[1,56,j]==0) { 0 } else { 
Core_data[Core_data[1,56,j],41,j]*1/(1+R_int)^(Core_data[1,56,j]) } 
         
        Core_data[1,73,j] = if (Core_data[1,53,j]==0) { 0 } else { Core_data[Core_data[1,53,j],28,j] } 
        Core_data[1,74,j] = if (Core_data[1,54,j]==0) { 0 } else { Core_data[Core_data[1,54,j],29,j] } 
        Core_data[1,75,j] = if (Core_data[1,55,j]==0) { 0 } else { Core_data[Core_data[1,55,j],30,j] } 
        Core_data[1,76,j] = if (Core_data[1,56,j]==0) { 0 } else { Core_data[Core_data[1,56,j],31,j] } 
    } 
     
    ### Determine Real Option Value 
    # ROV A1                                           
    Core_data[1,63,1] = mean(Core_data[1,58,], na.rm = TRUE) 
    # ROV A2   
    Core_data[1,64,1] = mean(Core_data[1,59,], na.rm = TRUE) 
    # ROV A3                                             
    Core_data[1,65,1] = mean(Core_data[1,60,], na.rm = TRUE) 
    # ROV A4                                             
    Core_data[1,66,1] = mean(Core_data[1,61,], na.rm = TRUE) 
    # Optimal ratio A1                                             
    Core_data[1,78,1] = mean(Core_data[1,73,], na.rm = TRUE) 
    # Optimal ratio A2                                           
    Core_data[1,79,1] = mean(Core_data[1,74,], na.rm = TRUE) 
    # Optimal ratio A3                                           
    Core_data[1,80,1] = mean(Core_data[1,75,], na.rm = TRUE) 
    # Optimal ratio A4                                           
    Core_data[1,81,1] = mean(Core_data[1,76,], na.rm = TRUE) 
    
     
    ### Graph data to convergence 
    for (j in seq(from= 1, to = N_sim, by = 1) ) { 
        # ROV A1 convergence 
        Core_data[1,68,j] = mean(Core_data[1,58,1:j], na.rm = TRUE) 
        # ROV A2 convergence 
        Core_data[1,69,j] = mean(Core_data[1,59,1:j], na.rm = TRUE) 
        # ROV A3 convergence 
        Core_data[1,70,j] = mean(Core_data[1,60,1:j], na.rm = TRUE) 
        # ROV A4 convergence 
        Core_data[1,71,j] = mean(Core_data[1,61,1:j], na.rm = TRUE) 
         
        # Optimal ratio A1 convergence 
        Core_data[1,83,j] = mean(Core_data[1,73,1:j], na.rm = TRUE) 
        # Optimal ratio A2 convergence 
        Core_data[1,84,j] = mean(Core_data[1,74,1:j], na.rm = TRUE) 
        # Optimal ratio A3 convergence 
        Core_data[1,85,j] = mean(Core_data[1,75,1:j], na.rm = TRUE) 
        # Optimal ratio A4 convergence 
        Core_data[1,86,j] = mean(Core_data[1,76,1:j], na.rm = TRUE) 
         
    } 
     
    return(Core_data) 
} 
In [4]: 
Test_summary <- function(x) { 
    table_summary <- data.frame(c(x[1,63,1],x[1,64,1],x[1,65,1],x[1,66,1]), 
                                c(x[1,78,1],x[1,79,1],x[1,80,1],x[1,81,1])) 
                             
    colnames(table_summary) <- c("Real Option Value","Optimal ratio") 
    rownames(table_summary) <- c("A1","A2","A3","A4") 
 
    return(table_summary) } 


